Programming Language |mplementation

Part XI : Dynamic Memory Management

* Dynamic Memory
« Allocation
* Manual Deallocation

* Garbage Collection

- Reference Counting

- Mark & Sweep

- Two-Space Collectors

- Generational Collecors
* New Challenges:

- Real-time collectors

- Distributed collectors

Martin Odersky, LAMP/DI 1

Dynamic Memory

* Most languages need to allocate data on the heap.

* This is always necessary for data which
- is not copied on assigment, parameter passing, and
- lives longer than the function which created it.

* For instance in Misc: Lists can live longer than the functions that
create them.

+ Two questions:
- How is heap data allocated?

- Once heap data is no longer used, how is the memry it occupies
reclaimed?

* Both of these are tasks done by the runtime system.

* The runtime system is a set of system procedures and (possibly)
threads which is linked with each executed program.

Martin Odersky, LAMP/DI 2




Programming Language |mplementation

Object Allocation and Deallocation.

* Basic scheme:
- The system keeps a free-list of unused memory blocks.
- To allocate an object, the free-list is searched for a block which
is large enough.
- Many variations of this scheme have been explored:

- first fit, best fit, exact fit with bounded number of freelist block
sizes..

+ Address order, or FIFO, or LIFO search, or round robin.

- The found block is removed from the free-list, and is used to
store the object.

- If no block is found, the program is aborted (for systems with
only physical memory), or the heap size is increased.

- Any remaining memory is returned to the freelist.
- To deallocate an object, its memory is returned to the freelist.

- Freelist blocks which are adjacent to each other are merged to

create larger blocks. ,
Martin Odersky, LAMP/DI 3

Challenges

+ Allocation and deallocation times.
- How long does it take to search the freelist?

+ Time for « book-keeping », i.e. entering and removing objects
Memory fragmentation:
- After a number of allocation and deallocation steps, one might
end up in a state where the total size of free memory is larger
than the size of an object to be allocated, yet there is no single
reelist block which is large enough.
- Two forms

« Internal fragmentationis the wastage of memory because larger
blocks than necessary are taken from the freelist.

« External fragmentationis the wastage of memory from blocks on
the freelist which are too small to allocate an object.

Martin Odersky, LAMP/DI 4




Programming Language |mplementation

Measuring and Avoiding Fragementation

* Measure of fragmentation during a program run:
size of total heap required / max size of allocated objects.

* Best techniques depend very much on object size distribution:

- Knuth, "The art of computer programming, Volume 1":

- First fit better than best fit.

* However, Knuth uses synthetic random distribution of object sizes.
- Recent measurements with real world object-size distribution:

+ Best fit much better than first fit;

+ Address-ordered or FIFO best fit are best.

+ However, this is also slowest for free list search unless
optimizations are added.

* Once the heap is too fragmented it can be compacted by moving
objects around, but this is expensive.

Martin Odersky, LAMP/DI 5

Reasons against Manual Deallocation

* Traditional manual allocation is hard to get right.
- Sometimes, objects are deallocated too early, then references
point to random memory. ("Dangling pointers")
- Sometimes, objects are deallocated too late or not at all, then
heaps become too large ("Space leaks").
- Estimate: About Aa/f of the time spent in error detection and
fixing for C++ programs is spent on storage related bugs.

- Popular (but expensivel) tools to detect such problems: Purify, or
CenterLine.
* Manual deallocation seriosuly restricts APT's.

- It is not possible to define general values which are allocated on
the heap, as one always needs to keep a handle for deallocation.

- Compare for example strings in C/C++ with strings in Java.

* Manual deallocation is unsafe, hence not permitted

Martin Odersky, LAMP/DI 6




Programming Language |mplementation

Garbage Collection

* Garbage collection is a method to reclaim unused storage automatic
ally.

* Question: When is storage unused?

+ Answer:

- An access path is a sequence of references starting in a global
reference or in a reference on some process stack, possibly
followed by some field or array element selections.

- An object is reachable if there is an access path leading to it.
- The storage of all objects that are not reachable can be reused.

* Three main algorithms for GC:
- reference counting
- mark & sweep
- copying collectors

Martin Odersky, LAMP/DI 7

Reference Counting

* Idea: Each heap object keeps a field ref cnt in which the number of
references to the object is kept.

* When the object is created, the count is set to 1.

* For each assignment x = y, the following code is executed:
if (x !'=null) x->refcnt--;
if (y !'=null) y->refcnt++;

* Each time a pointer is deallocated from the stack, we also
decrement its ref cnt (unless the pointer is null).

* Obects whose ref cnt drops to O are reclaimed immediately.

* In that case all reference fields in a reclaimed objects get their
refcnt decremented (this might lead to further objects being
reclaimed).

Martin Odersky, LAMP/DI 8




Programming Language |mplementation

Advantages of Reference Counting:
- Easy to implement

- Can be implemented by by hand, or by special classes
(e.g. in C++: "smart pointers”.

- Storage is reclaimed immediately.
- Hence, better locality of allocated heap data.

Disadvantages of Reference Counting:
- Additional overhead for simple pointer operations.

- Additional space required in objects.

- Cyclic references cannot be recovered
(this is clearly the most serious problem).

Martin Odersky, LAMP/DI 9

Mark and Sweep

* Garbage Collection proceeds in two phases:

* Mark Phase: Starting with the global variables and the stack (the
so-called roots), follow all access paths and mark every visited
object (e.g. by setting abit in its descriptor).

+ Sweep Phase: Go linearly through the heap and recycle any objects
that do not have their mark bits set.

* Problem: When marking objects along a path, we need to keep rack
of where to go afterwards, for instance by recursion or by pushing
object addresses on a stack.

* If a path is very long, this leads to large additional space overhead
for the stack.

* Solution: Keep track of return addresses in the visited objects
themselves, for instance by pointer rotation.

Martin Odersky, LAMP/DI 10




Programming Language |mplementation

Advantages of Mark and Sweep:
- Can reclaim cyclic structures.
- Fairly easy to implement.
- Low space overhead.
Disadvantages of Mark and Sweep:

- Fragmentation can be a problem; to solve it, an additional
copying phase is required.

- Allocation from a freelist can be slow.

Martin Odersky, LAMP/DI 11

Copying Collectors

+ Idea: Split the heap in two spaces.
* Objects are allocated linearly in one space.

* When that space is full, we copy all reachable objects to the other

Wi

S

Martin Odersky, LAMP/DI 12




Programming Language |mplementation

Copying Collector Algorithm

scan = free = Start of To-Space
for Rin Roots: R = copy(R
whil e scan < free:
for f in fields(object at scan):
scan.f = copy(scan.f)
scan = scan + size(scan)

copy(P) =
if P.forward != null:
return P.forward
el se

copy size(P) bytes fromP to free
P.forward = free

free = free + size(P)

return P.forward

Martin Odersky, LAMP/DI

Advantages of Copying Collectors
- Can reclaim cyclic structures.
- Very easy to implement.

against limit; can be done inline.
- Compaction is automatic.

Disadvantages of Copying Collectors:

- Terrible locality, if space is bigger than cache.

Martin Odersky, LAMP/DI

- Extremely fast allocation: Incrent heap pointer and check

- Double the space overhead, because two spaces are needed.




Programming Language |mplementation

Generational Garbage Collection
* Problem: Garbage collecting the whole heap memory makes long
pause times.

* Empirical observation: Most objects die young, i.e

The longer an object lives, the longer is the likelyhood that
it will survive the next collection.

* Therefore, benefit of garbage collection is highest for young
objects.

* Idea: Try to keep young objects in a smaller space, which is
searched more often.

* Then GC takes less time, and yields proportionally more free space.

Martin Odersky, LAMP/DI 15

* Generational 6C Scheme: Rather than having two spaces of a
copying collector, we have N spaces, where N is the number of
generations.

+ We start by collecting the youngest generation from space O to
space 1.

« If this succeeds, 6C is finished; we have reclaimed a free space.

* Oherwise, if space 1 becomes full during a collection cycle, we copy
its life data to space 2.

- ...and so on.

* Problem: To avoid having to search all of the heap for referenced
objects, we need to keep rack of references from older
generations to younger ones.

Martin Odersky, LAMP/DI 16




Programming Language |mplementation

Modern Garbage Collectors

* For PC's and servers the currently fastest garbage collectors use a
multi-generation copying scheme.

- The youngest generation's size is chosen small enough to fit in
cache.

- Older (and larger) generations are often subdivided into pieces
to increase locality and decrease pause times (=> train algorithm).

* For embedded systems with tighter memory consraints, mark and
sweep is more often used.

Martin Odersky, LAMP/DI 17

Current Challenges

Garbage Collection is still an active research area.
Among the topics currently investigated are:

+ Concurrent GC. How can a garbage collector run concurrently with a
program which allocates data and modifies the heap?

- This is particularly attractive for multi-threaded processors.

* Real-time GC. How can pause times of a garbage collector be kept
small enough for real time.

* Distributed GC. How can we trace references between systems
with aceptable overhead?

Martin Odersky, LAMP/DI 18




