1 Bottom-Up Parsing

e A bottom-up parser builds a derivation from the terminal symbols,
working toward the start symbol.
e It consists of a stack and an input.

e Four actions:

e shift, which pushes the next token onto the stack

e reduce, removes Y1, ...,Yk, which are the right-hand side of some
production X ::= Y1 ... Yk. From the top of the stack and
replaces them by X.

e accept, ends the parser with success.

e error, ends the parser with an error message.




2

LALR(1) Parsing

Question: How does the parser know, which action to invoke.

Idea: Use a DFA applied to the stack to decide whether to shift or to
reduce.

The resulting parsers are called SLR, LR(0), LALR(1), LR(1)
depending on the algorithm used to construct them.

There is a trade off between accepted grammars and size of the
automaton.

LALR(1) is generally accepted as the best compromise.

This is, what JavaCUP uses (also yacc, bison).

All stronger methods have considerably larger automata.




3

Semantic Actions

A parser usually does more than just recognize syntax.
It could:

e Evaluate code (simple interpreter)

e Emit code (single pass compiler)

e Build an internal data structure (multi pass compiler, interpreter)
Generally, a parser performs semantic actions
In a machine-generated bottom-up parser, they are added to the
grammar submitted to the parser generator.
There is a second stack, which keeps a value for each terminal or
non-terminal. These can be used in the semantic action.
In a recursive descent parser, semantic actions are embedded in the

recognizer routines.




4 An Interpreter for Expressions

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN:
terminal Integer NUMLIT;

non terminal Program;

non terminal Integer Expression, Term, Factor;
precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;




5 An Interpreter for Expressions (2)

Program .:= Expression:e
{: System.out.printin(e.intValue()); :}
Expression ::= Expression:e PLUS Term:t
{: RESULT = new Integer(e.intValue() + t.intValue()); :}
| Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() — t.intValue()); :}
| Term:t
{: RESULT =t; :}




6 An Interpreter for Expressions (3)

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() * f.intValue()); :}
| Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() / f.intValue()); :}
| Factor:f
{: RESULT =f; :}

Factor = NUMLIT:n
{: RESULT = n; :}
| LPAREN Expression:e RPAREN
{: RESULT =e; :}




7 Error Recovery

e After an error, the parser should be able to continue processing.

e Processing is for finding other errors, not for code generation or
interpretation. These get disabled after the first error.

e (Question: How can the parser recover from an error and resume

normal parsing?




8 Error Recovery in Bottom-Up

e There are different schemes. The following is implemented in
JavaCUP, yacc, bison.

e Introduce a special symbol error.

e The author of a parser can use error in productions.

e For instance:
Statement ::= Assignment
| IfStatement

| error”;




9 Error Recovery in Bottom-Up (2)

e If the parser encounters an error, it will pop the stack until it gets into
a state, where error is legal.

e At this point it shifts error onto the stack.

e Then, the input tokens are skipped, until the next input token is one
that can legally follow the new state.

e This scheme is very dependent on a good choice of error productions.

e Assume a production Statement = error ”;

e The parser encounters error inside a statement. It will pop the
stack until it expects a statement.

e At this point it shifts error onto the stack.

e Then, the input tokens are skipped, until ";" is found.




10 Where to put error

e Different people recommend different things.
e It is a good idea to have a terminal after error to ensure termination.
e Examples:

Statement ::= error SEMI
| LBRACE error RBRACE
Expression ::= LPAREN error RPAREN

e The generated parser will tell you the exact position of the error.

10




	Bottom-Up Parsing
	LALR(1) Parsing
	Semantic Actions
	An Interpreter for Expressions
	An Interpreter for Expressions (2)
	An Interpreter for Expressions (3)
	Error Recovery
	Error Recovery in Bottom-Up
	Error Recovery in Bottom-Up (2)
	Where to put {sf error}

