
1 Bottom-Up Parsing

• A bottom-up parser builds a derivation from the terminal symbols,
working toward the start symbol.
• It consists of a stack and an input.
• Four actions:

• shift, which pushes the next token onto the stack
• reduce, removes Y1, ...,Yk, which are the right-hand side of some

production X ::= Y1 ... Yk. From the top of the stack and
replaces them by X.

• accept, ends the parser with success.
• error, ends the parser with an error message.

1



2 LALR(1) Parsing

• Question: How does the parser know, which action to invoke.
• Idea: Use a DFA applied to the stack to decide whether to shift or to

reduce.
• The resulting parsers are called SLR, LR(0), LALR(1), LR(1)

depending on the algorithm used to construct them.
• There is a trade off between accepted grammars and size of the

automaton.
• LALR(1) is generally accepted as the best compromise.
• This is, what JavaCUP uses (also yacc, bison).
• All stronger methods have considerably larger automata.

2



3 Semantic Actions

• A parser usually does more than just recognize syntax.
• It could:

• Evaluate code (simple interpreter)
• Emit code (single pass compiler)
• Build an internal data structure (multi pass compiler, interpreter)

• Generally, a parser performs semantic actions
• In a machine-generated bottom-up parser, they are added to the

grammar submitted to the parser generator.
• There is a second stack, which keeps a value for each terminal or

non-terminal. These can be used in the semantic action.
• In a recursive descent parser, semantic actions are embedded in the

recognizer routines.

3



4 An Interpreter for Expressions

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN;
terminal Integer NUMLIT;

non terminal Program;
non terminal Integer Expression, Term, Factor;
precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;

4



5 An Interpreter for Expressions (2)

Program ::= Expression:e
{: System.out.println(e.intValue()); :}

;
Expression ::= Expression:e PLUS Term:t

{: RESULT = new Integer(e.intValue() + t.intValue()); :}
| Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() – t.intValue()); :}

| Term:t
{: RESULT = t; :}

;

5



6 An Interpreter for Expressions (3)

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() ∗ f.intValue()); :}

| Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() / f.intValue()); :}

| Factor:f
{: RESULT = f; :}

;
Factor ::= NUMLIT:n

{: RESULT = n; :}
| LPAREN Expression:e RPAREN
{: RESULT = e; :}

;

6



7 Error Recovery

• After an error, the parser should be able to continue processing.
• Processing is for finding other errors, not for code generation or

interpretation. These get disabled after the first error.
• Question: How can the parser recover from an error and resume

normal parsing?

7



8 Error Recovery in Bottom-Up

• There are different schemes. The following is implemented in
JavaCUP, yacc, bison.
• Introduce a special symbol error.
• The author of a parser can use error in productions.
• For instance:

Statement ::= Assignment
| IfStatement
| error ”;”
;

8



9 Error Recovery in Bottom-Up (2)

• If the parser encounters an error, it will pop the stack until it gets into
a state, where error is legal.
• At this point it shifts error onto the stack.
• Then, the input tokens are skipped, until the next input token is one

that can legally follow the new state.
• This scheme is very dependent on a good choice of error productions.
• Assume a production Statement = error ”;”

• The parser encounters error inside a statement. It will pop the
stack until it expects a statement.

• At this point it shifts error onto the stack.
• Then, the input tokens are skipped, until ”;” is found.

9



10 Where to put error

• Different people recommend different things.
• It is a good idea to have a terminal after error to ensure termination.
• Examples:

Statement ::= error SEMI
| LBRACE error RBRACE
;

Expression ::= LPAREN error RPAREN
;

• The generated parser will tell you the exact position of the error.

10


	Bottom-Up Parsing
	LALR(1) Parsing
	Semantic Actions
	An Interpreter for Expressions
	An Interpreter for Expressions (2)
	An Interpreter for Expressions (3)
	Error Recovery
	Error Recovery in Bottom-Up
	Error Recovery in Bottom-Up (2)
	Where to put {sf error}

