
1 Part III: Parsing

• Check, whether a sentence belongs to the language.
• Construct the abstract syntax tree (later).

• Top-Down Parsing
• Parsing with JavaCUP
• Bottom-Up Parsing

1

2 Parse Trees

• Nodes are non-terminals.
• Leaves are terminals.
• Branching corresponds to rules of the grammar.
• The leaves give a sentence of the input language.
• For every sentence of the language there is at least one parse tree.
• Sometimes we have more then one parse tree for a sentence.
• Grammars which allow more than one parse tree for some sentences

are called ambiguous and are usually not good for compilation.

2

3 Examples

Ambigous grammar:

E ::= E ”∗” E | E ”+” E | ”1” | ”(” E ”)”

Unambigous grammar

E ::= E ”+” T | T
T ::= T ”∗” F | F
F ::= ”1” | ”(” E ”)”

3

4 Top-Down Parsing

• Recursive descent parsing.
• Predictive parsing.

• Regular languages are limited in that they cannot express nesting.
• Therefore, finite state machines in general cannot recognize

context-free grammars.
• Let’s try the hand-writing method anyway!

4

Example ::= IDENT Example NUMLIT | NUMLIT.

leads after simplification to the following parser:

void Example() {
if (token == IDENT) {

token = nextToken();
Example();
if (token == NUMLIT) {

token = nextToken();
} else {

error();
}

} else if (token == NUMLIT) {
token = nextToken();

} else {
error();

}
}

5

void Example() {
switch(token) {
case IDENT:

token = nextToken();
Example();
switch(token) {
case NUMLIT:

token = nextToken(); break;
default:

error(); break;
}
break;

case NUMLIT:
token = nextToken(); break;

default:
error(); break;

}
}

6

5 Deriving a Parser from EBNF

To derive a parser from a context-free grammar written in EBNF style:

• Introduce one function void A() for each non-terminal A

• The task of A() is to recognize sub-sentences derived from A, or issue
an error if no A was found.

• Translate all regular expressions on the right-hand-side of productions
as before, but

• every occurrence of a non-terminal B maps to B()

• Recursion in the grammar translates naturally to recursion in the
parser.

• This technique of writing parsers is called parsing by recursive descent
or predictive parsing.

7

6 A Parser for Expressions

Expression ::= Expression ”–” Term | Term.
Term ::= Term ”/” Factor | Factor.
Factor ::= NUMLIT | ”(” Expression ”)”.

void Expression() {
if (token == NUMLIT || token == LPAREN) {

Expression();
if (token == MINUS) {

token = nextToken();
} else { error(); }
Term();

} else {
Term();

}

8

7 first(X), follow(X) and nullable

• first(X) are the terminals X can start with.

• A terminal t is in first(X) if there is a parse tree, such that t is the
leftmost leaf under X.

• ε leaves do not count.
• Example:

A ::= ”b” ”c” | B ”d”.
B ::= ”a” | ε.

first(A) = { b, a, d }
• follow(X) are terminals which can follow X.

• A terminal t is in follow(X) if there is a parse tree such that t is
the leftmost leaf after the leaves under X

• Again, ε leaves do not count.
• Example: follow(B) = { d }

• A non-terminal is nullable if it can derive the empty string (it may
have only ε-leaves (Example: B is nullable)

9

8 How to compute first(X) and follow(X)?

A ::= B ”x” C.

• first(B) ⊆ first(A).
• If B is nullable then x ∈ first(A).
• Naive method: compute first, follow and nullable for right-hand side

and from that for A.
• Does not work for recursion!

E ::= E ”+” T | T.

• Idea: Start with empty sets and add elements until all conditions are
satisfied.

• This is called a fixpoint algorithm (It runs until there are no more
changes, until the solution is fix).

10

9 Exercise

S ::= E ”$”.
E ::= T ”+” E | T.
T ::= ”x”.

Find the first and follow sets for T and E. Are there any nullable
non-terminals?

11

10 Formal Definition: first(X), follow(X), nullable

first(X), follow(X) and nullable are the smallest sets with the following
properties:

For each production X ::= Y1 .. Yk, 1 ≤ i, j ≤ k:
if { Y1, ..., Yk } ⊆ nullable

X ∈ nullable
if { Y1, ..., Yi–1 } ⊆ nullable

first(X) = first(X) ∪ first(Yi)
if { Yi+1, ..., Yk } ⊆ nullable

follow(Yi) = follow(Yi) ∪ follow(X)
if { Yi+1, ..., Yj–1 } ⊆ nullable

follow(Yi) = follow(Yi) ∪ first(Yj)

12

11 Algorithm for first(X), follow(X) and nullable

nullable = ∅;
for each terminal t { first(t) = t; follow(t) = ∅; }
for each nonterminal Y { first(Y) = ∅; follow(Y) = ∅; }
repeat {

nullable’ = nullable; first’ = first; follow’ = follow;
for each production X ::= Y1 .. Yk, 1 ≤ i, j ≤ k {

if { Y1, ..., Yk } ⊆ nullable
nullable = nullable ∪ X;

if { Y1, ..., Yi–1 } ⊆ nullable
first(X) = first(X) ∪ first(Yi);

if { Yi+1, ..., Yk } ⊆ nullable
follow(Yi) = follow(Yi) ∪ follow(X);

if { Yi+1, ..., Yj–1 } ⊆ nullable
follow(Yi) = follow(Yi) ∪ follow(Yj);

}
until (nullable = nullable’, first = first’, follow = follow’);

13

12 Extending first und nullable to righthand

sides

• nullable(ε) = true

• nullable(tu) = false

if t is a terminal
• nullable(Xu) = nullable(X) ∧ nullable(u)

if X is a non-terminal

• first(ε) = ∅
• first(tu) = {t}

if t is a terminal

• first(Xu) =

 first(X), ¬nullable(X)

first(X) ∪ first(u), nullable(X)
if X is a non-terminal

14

13 LL(1)

A grammar is called LL(1), if for every production

A ::= u1 | u2 | ... | un
• first(ui) ∩ first(uj) = ∅ if i 6= j

• nullable(ui) = ∅ for at most one i
• first(ui) ∩ follows(A) = ∅ if nullable(uj) and i 6= j

Basically, it has to be clear, which alternative to choose, by looking at 1
token.

For LL(1) grammars recursive descent parsing works!

15

14 Eliminating Left Recursion

Expression ::= Term { ”–” Term }.
Term ::= Factor { ”/” Factor }.
Factor ::= NUMLIT | ”(” Expression ”)”.

void Expression() {
Term();
while (token == MINUS) {

token = nextToken();
Term();

}
}
• Here we always need to know, whether to stay in the loop or to leave

it.

16

15 Another Problem

Factor ::= IDENT | IDENT ”[” Expression ”]” | NUMLIT.

void Factor() {
if (token == IDENT) {

??
} else {

if (token == NUMLIT) {
token = nextToken();

} else {
error();

}
}

}

17

16 Left Factoring

Factor ::= IDENT [”[” Expression ”]”] | NUMLIT.

void Factor() {
if (token == IDENT) {

if (token == LBRACKET) {
token = nextToken();
Expression();
if (token == RBRACKET) {

token = nextToken();
} else { error(); }

}
} else {

if (token == NUMLIT) {
nextToken();

} else { error(); }
}

}
18

17 From EBNF to BNF

For building parsers (especially bottom-up) a BNF grammar is often
better, than EBNF. But it’s easy to convert an EBNF Grammar to BNF:

• Convert every repetition { E } to a fresh non-terminal X and add
X ::= ε | E X.
• Convert every option [E] to a fresh non-terminal X and add

X ::= ε | E.
• Convert every group (E) to a fresh non-terminal X and add

X ::= E.
• We can even do away with alternatives by having several productions

with the same non-terminal.
X ::= E | E’. becomes X ::= E. X ::= E’.

19

18 Error Recovery for Top-Down

• We choose a set of stop-symbols, e.g. } ;)

• If we encounter an error, we call skip(), give an error message and
continue normally.

• skip() skips the input to the next stop symbol.
• It also skips subblocks { ... } completely.

• We do not print two error messages for the same position.

{
a = 5 ∗ (3 4);

}

20

19 Summary Top-Down Parsing

• A context-free grammar can be converted directly into a program
scheme for a recursive descent parser.
• A recursive-descent parser finds a parse tree top down, from the start

symbol towards the terminal symbols.
• Weakness: Must decide what to do based on first input token.

21

20 The Parser Generator JavaCUP

http://www.cs.princeton.edu/ appel/modern/java/CUP/.

• Generates a class Parser.java, which contains the parser.
• Generates a class Tokens.java, which is suitable to be used by a JLex

scanner.
• Recognizes LALR(1) grammars (even more than LL(1)).

• allows left recursion
• allows common start, (if it is not too hidden)
• only BNF

• If a grammar is not LALR(1) it produces an error message.

22

http://www.cs.princeton.edu/~appel/modern/java/CUP/

21 An Expression Parser in JavaCUP

package expression;
import java cup.runtime.∗;
parser code {:

public Parser(Scanner lexer) {
super(lexer);

}
public void report error(String msg, Object o) {

if (o instanceof java cup.runtime.Symbol) {
java cup.runtime.Symbol sym =

(java cup.runtime.Symbol) o;
Report.error(sym.left, msg);

} else {
Report.error(Position.UNDEFINED, msg);

}
}

:};

23

22 An Expression Parser in JavaCUP (2)

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN;
terminal NUMLIT;
non terminal Expression, Term, Factor;
start with Expression;

Expression ::= Expression PLUS Term
| Expression MINUS Term
| Term
;

Term ::= Term TIMES Factor
| Term DIV Factor
| Factor
;

Factor ::= NUMLIT
| LPAREN Expression RPAREN
;

24

23 A shift-reduce Conflict

If we enter the grammar

Expression ::= Expression PLUS Expression
;

without precedence JavaCUP will tell us:

∗∗∗ Shift/Reduce conflict found in state #4
between Expression ::= Expression PLUS Expression (∗)
and Expression ::= Expression (∗) PLUS Expression
under symbol PLUS
Resolved in favor of shifting.

The grammar is ambiguous!

Still, telling JavaCUP that PLUS is left associative helps!

25

24 Using Precedence

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN;
terminal NUMLIT;
non terminal Expression, Term, Factor;
precedence left PLUS, MINUS;
precedence left TIMES, DIV;
start with Expression;

Expression ::= Expression PLUS Expression
| Expression MINUS Expression
| Expression TIMES Expression
| Expression DIV Expression
| NUMLIT
| LPAREN Expression RPAREN
;

26

25 Precedence

• left means, that a + b + c is parsed as (a + b) + c

• lowest precedence comes first, so a + b ∗ c is parsed as a + (b ∗ c)

27

26 A reduce-reduce Conflict

These conflicts are less common and often indicate a problem of the
language rather than the grammar.

Expression ::= MExpression
| DExpression
;

MExpression::= IDENT TIMES IDENT
| IDENT
;

DExpression::= IDENT DIV IDENT
| IDENT
;

∗∗∗ Reduce/Reduce conflict found in state #4
between MExpression ::= IDENT (∗)
and DExpression ::= IDENT (∗)
under symbols: {EOF}
Resolved in favor of the first production.

28

	Part III: Parsing
	Parse Trees
	Examples
	Top-Down Parsing
	Deriving a Parser from EBNF
	A Parser for Expressions
	{sf first(X)}, {sf follow(X)} and {sf nullable}
	How to compute {sf first(X)} and {sf follow(X)}?
	Exercise
	Formal Definition: {sf first(X)}, {sf follow(X)}, {sf nullable}
	Algorithm for {sf first(X)}, {sf follow(X)} and {sf nullable}
	Extending first und nullable to righthand sides
	LL(1)
	Eliminating Left Recursion
	Another Problem
	Left Factoring
	From EBNF to BNF
	Error Recovery for Top-Down
	Summary Top-Down Parsing
	The Parser Generator JavaCUP
	An Expression Parser in JavaCUP
	An Expression Parser in JavaCUP (2)
	A shift-reduce Conflict
	Using Precedence
	Precedence
	A reduce-reduce Conflict

