
1 Part I: Compilation: Overview and

Foundations

• The task and structure of a compiler
• Why study compilation?
• Language and syntax

1

2 The Task of a Compiler

• The main task of a compiler is to map programs written in a given
source language into a target language
• Often, the source language is a programming language and the target

language is a machine language
• Some exceptions: Source-to-source translators, machine-code

translation, data manipulation in XML
• Part of the task of a compiler is also to detect, whether a given

program conforms to the rules of the source language.

2

3 The Task of an Interpreter

• The task of an interpreter is to map programs written in a given
source language into an internal representation and then to execute
the internal representation.
• Some languages (LISP, SCHEME, BASIC, Smalltalk, PROLOG) are

mostly interpreted.
• Some languages (Java, Pascal, PROLOG) are compiled into abstract

machine code, which is then interpreted by a virtual machine.
• Advantage of compilation:

• execution speed
• Advantage of interpretation:

• quick turn-around
• portability

• Virtual machines have a bit of both.

3

4 Compiler-Structure

Lexical analysis ⇒Token sequence

Syntax analysis ⇒Structure tree

Semantic analysis ⇒Attributed structure tree

Intermediate code generation ⇒Intermediate code sequence

Optimization ⇒Intermediate code sequence

Target code generation ⇒Target code sequence

• Phases are not necessarily executed one after another.
• Intermediate data structures do not always exist in their entirety at

any one time.
• In the case of an interpreter, interpretation can happen on the

attributed syntax tree or on the intermediate code. For simple
languages somtimes even during parsing instead of building a tree.

4

5 Why study Compiler Construction?

There are very few people who will write compilers for a living, so why
bother?

• Many programs have to read and analyze input.

• parameter-files
• user-commands
• XML

• Analyzing binary data is very similar to analyzing source programs
• How to organize analyzed information, how to manipulate and how to

output it.

• pretty printer

5

6 Why study Compiler Construction(2)?

• Understanding compilers means understanding programming
languages better.

• Designing small languages (user commands)
• Connects software and hardware?
• Connects theory and practice?

6

7 Languages

• Formally, a language is a set of flat strings (sentences)
• In practice, each string in a language has a structure which can be

described by a tree.
• Structure rules for sentences are defined by a grammar
• Example:

• The sentences of a programming language are (legal) programs.
• Programs are sentences of tokens (words). The structure of a

program is given by a context-free grammar.
• Words themselves are sequences of characters, the structure of

words can also be given by a grammar.

7

8 Language and Grammars

• A language has structure which is determined by a grammar.
• Example: A correct sentence consists of a subject, followed by a verb
• This can be expressed by the grammar

Sentence ::= Subject ” ” Verb.

• Let’s complete this with two more productions:
Subject ::= ”Peter” | ”Chelsea”.

Verb ::= ”runs” | ”stops”.

• Then this defines 4 possible sentences:
Peter runs | Peter stops | Chelsea runs | Chelsea stops

• Usually languages contain an infinite number of sentences.

Q: Write a grammar for integer numbers!

8

9 Language and Grammars (2)

• An infinite number of sentences can be expresses by a finite number of
productions by using recursion over some symbols.
• Example:

Number ::= Digit | Digit Number.

Digit ::= ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” | ”9”.

• allows
0 | 12 | 347 | 0013 | ...

9

10 Context-free Grammars

A context-free grammar is formally defined by

• A set of terminal symbols (”0”, ”7”, ”Chelsea”)
• A set of non-terminal symbols (Subject, Sentence)
• A set of syntactic rules (productions) (Subject::=”Chelsea”|”Peter”.)

• A start symbol (Sentence)

A grammar defines as its language the set of those sequences of terminal
symbols which can be derived from the start symbol by successive
application of productions.

• A language is a set of sentences.
• A grammar is one description of a language.
• There are in general many grammars for a language.

10

11 BNF (Backus-Naur Form)

This was originally developed by J.Backus and P.Naur for Algol 60.

• a production (or rule) consists of a left-hand-side and a
right-hand-side.
• The left-hand-side is a single non-terminal.

• terminals never occur on left-hand-sides
• The right-hand-side contains terminals and non-terminals, we use

• We use | for alternatives.
• We use juxtaposition for concatenation.
• concatenation binds stronger than |.

A ::= b c | d means A ::= (b c) | d and not A ::= b (c | d)

• We often use quotes or all capitals for terminals.

11

12 EBNF (Extended BNF)

• We use (...) for grouping.
• We use ε for the empty word.
• We use [E] to stand for (ε | E)

• We use { E } to stand for (ε | E | EE | EEE | ...)

We can now write
Number ::= [”–”] Digit { Digit }.
Digit ::= ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” | ”9”.

or
Sentence ::= (”Peter” | ”Chelsea”) ” ” (”runs” | ”stops”).

Q: Can I replace all recursion by {}? Q: Can I replace all {} by recursion?

12

13 No/Yes

We cannot write this without recursion:
Par ::= ”(” Par ”)” | ”3”

We can transform every grammar in EBNF into a grammar in BNF, that
describes the same language (later).

Q: What is the difference between the above and

Par ::= (Par) | ”3”

13

14 Two Level Description

• Context-free syntax of arithmetic expressions
Expression ::= Expression (MINUS | PLUS) Term | Term.
Term ::= Term (TIMES | DIV) Factor | Factor.
Factor ::= NUMLIT | LPAREN Expression RPAREN.

• Lexical syntax of arithmetic expressions
TIMES ::= ”∗”.
DIV ::= ”/”.
PLUS ::= ”+”.
MINUS ::= ”–”.
LPAREN ::= ”(”.
RPAREN ::= ”)”.
NUMLIT ::= DIGIT { DIGIT }.
DIGIT ::= ”0” | ... | ”9”.

White space consist of ” ”, ”\t”, ”\n”.

14

15 Two Level Description (2)

For a practical specification we will use:

• Context-free Syntax
Expression ::= Expression (”–” | ”+”) Term | Term.
Term ::= Term (”∗” | ”/”) Factor | Factor.
Factor ::= NUMLIT | ”(” Expression ”)”.

• Lexical Syntax
NUMLIT ::= DIGIT { DIGIT }.
DIGIT ::= ”0” | ... | ”9”.

But for the actual implementation we will use the first scheme.

• Tokens like NUMLIT are terminals in the context-free syntax
• But they are non-terminals in the lexical syntax.

15

16 Two Level Description (2)

Why two levels?

• We think that way (sentence, word, character).
• White space, comments are dealt with in one place.
• Efficiency (Splitting in Scanner and Parser).

16

	Part I: Compilation: Overview and Foundations
	The Task of a Compiler
	The Task of an Interpreter
	Compiler-Structure
	Why study Compiler Construction?
	Why study Compiler Construction(2)?
	Languages
	Language and Grammars
	Language and Grammars (2)
	Context-free Grammars
	BNF (Backus-Naur Form)
	EBNF (Extended BNF)
	No/Yes
	Two Level Description
	Two Level Description (2)
	Two Level Description (2)

