
1 Part VI: Name Analysis

• Programming languages are not really context-free.
• Representation of contexts in a compiler.
• Symbol tables and symbols.

1



2 Programming Languages are not really

context-free

• Counter example: Every identifier needs to be declared.
• being declared is a property that depends on context.
• In theory, a programming language could be specified completely in a

context-dependent grammar.
• But in practice, we define a context-free superset of the language in

EBNF, and then we weed out illegal programs with further rules.
• Those rules typically need access to an identifier’s declaration.

(For example to know the declared type in type-checking)

2



3 Purpose of Name Analysis

• The purpose of name analysis is to find out, which use of an identifier
refers to which definition.
• It also finds out if there are uses of an identifier which are not defined,

and if there are illegal double definitions.

class A {
int i,j;
void m() {

i = 7;
int i;
i = 3;

}

void n(int j, int k) {
if (j == 5) {

int i;
i = 4;

} else {
i = 6;

}
}

}

3



4 Block Structured Languages

• Most programming languages have block structured visibility rules for
identifiers.
• This also holds for Java.
• For the purpose of this discussion, a block is

• anything enclosed in braces {},
• the area consisting of a functions parameter-list to the end of its

body.

4



class A {
int i,j;
void m() {

i = 7;
int i;
i = 3;

}
void n(int j, int k) {

if (j == 5) {
int i;
i = 4;

} else {
i = 6;

}
}

}

x = 3 ∗ 4;
y = x + x;
z = x ∗ y;

5



5 Scope

• Every defined identifier has its scope, i.e. an area of program text, in
which it can be referred to.

• The scope of an identifier typically extends from the point of its
definition to the end of the enclosing block.

• In Java methods and fields can be accessed before their definition, but
we do not consider this here.

• It is illegal to refer to an identifier outside its scope.
• It is illegal to declare two identifiers with the same name in the same

block.
• It is legal to declare an identifier in a nested block, which is also

declared in an enclosing block.
• In this case the inner declaration hides (shadows) the outer.
• As a special rule, Java forbids shadowing parameters and local

variables, but we do not consider this here.

6



6 Representation of Context in a Compiler

• We represent context by a global data structure which stores for every
visible identifier data about its declaration.
• The data structure is called a symbol table and the information is

called a symbol table entry.
• If a language has nested blocks, the symbol table should be structured

in the same way.

7



7 Symbol Table Entries

• A symbol table entry is a data structure, which contains all the
information about a defined identifier a compiler needs to know.
• We use a class Symbol for symbol table entries.
• Symbols have a name field, and a pos field, to indicate the point of

definition.
• Because we usually want to store additional information we will build

subclasses of Symbol.
• Additional information are for example the declared types or the

number of local variables for a function.
• Because we define different things (variables, functions, classes), we

will have more than one subclass.

8



8 class Symbol

class Symbol {
/∗∗ position of the symbols definition
∗/

int pos;

/∗∗ the name of the symbol
∗/

String name;

/∗∗ create a new symbol
∗/

public Symbol(int pos, String name) {
this.pos = pos;
this.name = name;

}
}

9



9 Symbols

• We have for every occurence of an identifier a field sym in the abstract
syntax tree, which is set in the name analysis.
• The purpose of name analysis is to determine for every occurrence

(usage or definition) of an identifier in the source code the
corresponding symbol.

• At the definition point of an identifier, we construct a new symbol for
it set the field sym, and enter it into the symbol table.

• At a usage point of an identifier we look it up in the symbol table and
store it into the field sym.

10



10 Scopes

• Scopes represent areas of visibility.
• Symbols are grouped together in Scopes.
• For each block in the source program we have one Scope.
• We put the symbols for identifiers that are declared in a block into the

corresponding scope.
• So, a Scope is a data structure which refers to all identifiers declared

in it.
• Scopes are nested (as are blocks); therefore it is convenient to keep a

field outer in a scope, which refers to the enclosing scope.
• This leads to the following class:

11



class Scope {
/∗∗ map from identifier to symbol entries
∗/

public Map map;

/∗∗ outer scope
∗/

public Scope outer;

/∗∗ construct a new scope
∗/

public Scope(Scope outer) {
this.outer = outer;
this.map = new HashMap();

}

12



/∗∗ enter a symbol in scope ∗/
public void enter(Symbol sym) {

if (map.containsKey(sym.name)) {
error(); // double definition

} else {
map.put(sym.name, sym);

}
}

13



/∗∗ lookup a symbol ∗/
public Symbol lookup(String name) {

if (map.containsKey(name)) {
return (Symbol)map.get(name);

} else if (outer != null) {
return outer.lookup(name);

} else {
return null;

}
}

}

14



11 Example (1)

x = 3 ∗ 4;
y = x + x;
z = x ∗ y;

15



12 Example (2)

class A {
int i,j;
void m() {

i = 7;
int i;
i = 3;

}
void n(int j, int k) {

if (j == 5) {
int i;
i = 4;

} else {
i = 6;

}
}

}

16



13 A Visitor for Name Analysis

For a definition:

• It has to construct the Symbols.
• It has to set the sym-field of the definition in the tree to the new

Symbol.
• It has to enter the new Symbol into the Scope.
• It has to give an error for a double definition.

For a use:

• It has to lookup the Symbol for the identifier in the Scope.
• It has to set the sym-field in the tree to the looked up Symbol.
• It has to give an error for an undefined identifier.

17



public class Analyzer implements Tree.Visitor {

/∗∗ current scope
∗/

Scope scope;

/∗∗ construct a new semantic analyzer
∗/

public Analyzer() {
this.scope = null;

}

/∗∗ the main name analysis method
∗/

public static void analyzeTree(Tree tree) {
tree.apply(new Analyzer());

}

18



/∗∗ analysis method for recursion
∗ we use the visitor reuse version
∗/

protected void analyze(Tree tree) {
tree.apply(this);

}

/∗∗ open a new nested scope
∗/

protected void openScope() {
scope = new Scope(scope);

}

/∗∗ close a nested scope
∗/

protected void closeScope() {
scope = scope.outer;

}

19



14 Variable Declaration

StatOrDecl = VARDECL Type String
| ...

public void caseVarDecl(VarDecl tree) {
analyze(tree.type);
tree.sym = new VarSymbol(tree.pos, tree.name,

tree.type);
scope.enter(tree.sym);

}

20



15 Variable Usage

Expression = IDENT String
| ...

public void caseIdent(Ident tree) {
tree.sym = scope.lookup(tree.name);
if (sym == null) {

error();
}

}

21



16 Literals

Expression = STRINGLIT String
| ...

public void caseStringLit(StringLit tree) {
}

22



17 Blocks

StatOrDecl = BLOCK { StatOrDecl }
| ...

public void caseBlock(Block tree) {
openScope();
for (int i = 0; i < tree.stats.length; i ++) {

analyze(tree.stats[i]);
}
closeScope();

}

23



18 Function Declarations

StatOrDecl = FUNDECL Type String { Parameter } StatOrDecl
| ...

public void caseFunDecl(FunDecl tree) {
analyze(tree.type);
tree.sym = new FunSymbol(tree.pos, tree.name,

tree.type);
scope.enter(tree.sym);
openScope();
for (int i = 0; i < tree.params.length; i ++) {

analyze(tree.params[i]); // puts parameters in Scope
}
analyze(tree.body);
closeScope();

}

24



19 Hash tables

• A hash table is a fast implementation for tables.
• A table here is set of pairs (key, value), with no double keys
• We have two operations on tables:

• enter a pair (key, value): put(key, value)

• find the corresponding value for a given key: get(key)

• Idea: Use a function hash(key) which maps each key to an integer,
then store values in an array under the computed index.
• An example of a hash-function on strings would be the sum of all

characters.

25



20 Hash tables (2)

• But: hash might yield the same integer for different keys!
• We use an array of linked lists.
• To enter a pair, we compute the integer i and enter the pair into the

corresponding linked list a[i].
• To lookup a key, we compute the integer i and look up the key in the

corresponding linked list a[i].
• If the table is big enough, the lists are typically very short (often 0 or

1 element).
• Then access is very fast.
• Choosing a good hash-function is essential for performance (taking the

first character doesn’t work well).
• In Java HashMap implements hashtables.

26


	Part VI: Name Analysis
	Programming Languages are not really context-free
	Purpose of Name Analysis
	Block Structured Languages
	Scope
	Representation of Context in a Compiler
	Symbol Table Entries
	class Symbol
	Symbols
	Scopes
	Example (1)
	Example (2)
	A Visitor for Name Analysis
	Variable Declaration
	Variable Usage
	Literals
	Blocks
	Function Declarations
	Hash tables
	Hash tables (2)

