
1 How does generation work?

• There is a systematic way to map any regular expression to a lexical
analyzer
• Three steps

• regular expression ⇒nondeterministic finite state automaton
• nondeterministic finite state automaton ⇒deterministic finite

state automaton
• deterministic finite state automaton ⇒scanner program

1



2 Finite State Automata

• Consist of a finite number of states and transitions
• Transitions are labelled with input characters.
• There is one start state.
• A subset of the states are called final states.
• A finite state automaton starts in the start state, and for each input

symbol follows an edge labelled with that symbol.
• It accepts an input string iff it ends up in a final state.
• Examples: Blackboard.

2



3 (Non)Deterministic Finite State Automata

• In a nondeterministic finite state automaton (NFA), there can be
more than one edge originating from the same node and labelled with
the same label.
• Or there can be a special ε-edge, which can be followed without

consuming any input symbols.
• By contrast, in a deterministic finite state automaton all edges leaving

some node have pairwise disjoint label sets and there are no ε-labels.

3



4 From a Regular Expression to an NFA

4



5 From an NFA to a DFA

• Problem: Executing an NFA needs backtracking, which is inefficient.
• We would prefer a DFA.
• Idea: Do all possible choices in parallel.
• Construct a DFA, which has a state for each possible set of NFA

states.
• A DFA state is final if the set of its NFA states contains a final state.
• Since the number of states of an NFA is finite (say N), the number of

possible sets of states is also finite (bounded by 2N ).
• Often the number of reachable sets of states is much smaller.

5



6 Algorithm

• First step: For a set of states S, let closure(S) be the largest set of
states, that is reachable from S using only ε-transitions.
• Algorithm to compute T = closure(S):

T = S;
do {

T’ = T;
for each state s ∈ T {

for each edge e from s to some s’ {
if (e is labelled with ε) {

T = T ∪ s’;
}

}
}

} while (T != T’)
• This is an example of a fixpoint algorithm.

6



7 Algorithm (2)

• Second step: For a set of states S and an input symbol c, let
DFAedge(S,c) be the set of states that can be reached from S by
following an edge labelled with c.
• Algorithm to compute T=DFAedge(S,c)

T = ∅;
for each state s ∈ S {

for each edge e from s to some s’ {
if (e is labelled with c) {

T = T ∪ closure({s’});
}

}
}

7



8 Simulating a DFA

• Using the machinery developed so far, we can already simulate a DFA,
given an NFA.
• Let s be the start state. Then the simulation works as follows

d = closure({s});
while (ch != EOF) {

d = DFAedge(d, ch);
nextCh();

}
• Manipulating these sets at runtime is still very inefficient.

8



9 DFA Construction

• DFA-states are numbered from 0.
• 0 is the error state, corresponding to the empty set of NFA-states.

The DFA goes into state 0, iff the NFA would have blocked because no
edge matched the input symbol.

• states is an array which maps each DFA-state to the set of NFA states
it represents. trans is a matrix of transitions from state numbers to
state numbers.

9



10 DFA Construction (2)

• Algorithm:
states[0] = ∅; states[1] = closure({s});
j = 0; p = 2; /∗ states[0..j–1] done, state[j..p–1] to do ∗/
while (j < p) {

for each input character c {
d = DFAedge (states[j], c);
if (d == states[i] for some i < p)

trans[j, c] = i;
else {

states[p] = d;
trans[j, c] = p;
p = p + 1;

}
}
j = j + 1;

}

10



11 Executing a DFA

• use trans
s = 1;
while (ch != EOF) {

s = trans[s, ch];
nextCh();

}

11



12 Executing a DFA

• generate switch
s = 1;
while (ch != EOF) {

switch (s) {
case 0: error(); break;
case 1:

switch (ch) {
case ’a’: s = 3; break;
...
}
break;

...
}
nextCh();

}

12



13 Summary: Lexical Analysis

• Lexical analysis turns input characters into tokens.
• Lexical syntax is described by regular expressions.
• We have learned two ways to construct a lexical analyzer from a

grammar for lexical syntax.
• By hand, using a program scheme
• By machine, using JLex to construct of DFA.
• Scanner generator / hand-written scanner

• Speed
• Size
• Flexibility
• Maintenance
• Ease of Coding

13


	How does generation work?
	Finite State Automata
	(Non)Deterministic Finite State Automata
	From a Regular Expression to an NFA
	From an NFA to a DFA
	Algorithm
	Algorithm (2)
	Simulating a DFA
	DFA Construction
	DFA Construction (2)
	Executing a DFA
	Executing a DFA
	Summary: Lexical Analysis

