
1 Part V: Abstract Syntax

• Abstract Syntax
• Abstract Syntax Trees
• Constructing Trees in the Parser
• Using Trees

• Object Oriented Decomposition
• Visitors

1

2 Syntax Trees

• In a multi - pass compiler the parser builds a syntax tree explicitely.
• All later phases of a compiler work on the abstract syntax tree, not the

program source.
• The tree could be the concrete syntax tree (parse tree) corresponding

to the context-free grammar.
• Usually, there is a better choice.

2

3 Abstract Syntax / Concrete Syntax

Compared to the concrete syntax tree, some simplifications are possible:

• No need for parentheses: A ∗ (B + C) becomes ...

• No need to maintain terminals if (x == 0) y = 1; else y = 2; becomes
...

3

4 Abstract Syntax Tree

• An abstract syntax tree is a tree with one kind of node for each
alternative in the abstract syntax.
• It is simpler than a parse tree and therefore easier to use.
• It has all necessary information.

• We represent a tree using a set of Java classes, one for each alternative.
• Common abstract superclass: Tree.
• Each class represents subtrees as instance variables.
• Each class has a constructor to construct a node of the given kind.

4

5 Abstract Syntax Tree (2)

Abstract Syntax of Expressions

Expression = OPERATION Expression Expression Op
| NUMLIT int
;

Parenthesis are not necessary in abstract syntax!

5

public abstract class Tree {
public static class NumLit extends Tree {

int num;
public NumLit(int num) {

this.num = num;
}

}
public static class Operation extends Tree {

Tree left, right;
char op;
public Operation(Tree left, Tree right, char op) {

this.left = left;
this.right = right;
this.op = op;

}
}

}

6

6 Abstract Syntax Tree (3)

Repetition in the abstract syntax

Statement = STATEMENTLIST { Statement }
| ...
;

is typically implemented by arrays.

public static class StatementList extends Tree {
Tree[] stats;
public StatementList(Tree[] stats) {

this.stats = stats;
}

}

7

7 Constructing Trees in the Parser

Concrete Syntax

E ::= T { ”+” T }
T ::= NUMLIT

Top-Down Parser

void E() {
T();
while (token == PLUS) {

token == nextToken();
T();

}
}

8

E ::= T { ”+” T }
T ::= NUMLIT

void T() {
if (token == NUMLIT) {

token = nextToken();
} else {

error();
}

}

9

8 Constructing Trees(2)

Tree E() {
Tree t = T();
while (token == PLUS) {

int op = ’+’;
token == nextToken();
t = new Operation(t, T(), op);

}
}

10

Tree T() {
if (token == NUMLIT) {

int i = INTEGER.parseInt(tokenChars);
token = nextToken();
return new NumLit(i);

} else {
error();
return null;

}
}

11

9 Using Trees

• The abstract syntax tree is the central data structure of later phases
of the compiler.
• It is important to find a representation, which can be used in flexible

ways.
• How do tree processors (compiler passes) access the tree?
• Simple (and crude) solution: use instanceof to find out the kind of

the tree node and then cast to access tree elements.
if (tree instanceof NumLit) {

return ((NumLit) tree).num;
}

• This is neither elegant nor efficient.
• Better solution: object-oriented decomposition
• Even better solution: Visitors.

12

10 Example: Expressions

• We now present both object-oriented decomposition and visitor access,
using arithemetic expressions as an example.
• Two kind of nodes: Operation, NumLit

• Two kind of actions: eval, print

• Very simple example.
• Typical languages have 20 (Jex) - 40 (Java) or more kinds of nodes.
• A typical compiler has 5-10 processors.
• But the basic framework stays the same.

13

11 Object-oriented Decomposition

• Every tree processor P is represented by a dynamic method P() in
every tree class.
• The method is abstract in class Tree, implemented in every subclass.
• To process a subtree, simply call its processor method t.P().
• In our example: define methods eval() and print() in classes NumLit

and Operation

• The methods eval() and print() are abstract in Tree, so they can be
invoked on every tree.
• What they do will depend on the concrete kind of tree.

14

12 Object-oriented Decomposition

public abstract class Tree {
public abstract void print();
public abstract int eval();
public static class NumLit extends Tree {

int num;
public NumLit(int num) { ... }
public void print() {

System.out.print(”” + num);
}
public int eval() {

return num;
}

}

15

public static class Operation extends Tree {
Tree left, right;
char op;
public Operation(Tree left,

Tree right, char op) { ... }
public void print() {

System.out.print(”(”);
left.print();
System.out.print(” ” + op + ” ”);
right.print();
System.out.print(”)”);

}

16

public int eval() {
int l = left.eval();
int r = right.eval();
switch(op) {

case ’+’:
return l + r;

case ’–’:
return l – r;

case ’∗’:
return l ∗ r;

case ’/’:
return l / r;

default:
throw new InternalError();

}
}

}
}

17

13 A Driver Class

class EvalTest {
public static void main(String args[]) throws Exception {

...
Tree tree = parser.parse();
tree.print();
System.out.println(” = ” + tree.eval());

}
}

java expression.EvalTest
(3 ∗ (2 – 5)) = –9

18

14 A Typical Stack Trace

(#∗).print()
(#–).print()
(#2).print()
System.out.print(2)

(3 ∗ (

19

15 Extensibility

• With an abstract syntax tree, there can be extensions in two
dimensions.

• Add a new kind of node.
• Add a new kind of processor method.

• Which one is more common?
• Which one is easier to do?
• Add a new kind of node: add a new subclass.
• Add a new kind of processor method: add processor method to every

subclass.

20

16 Visitors

• The visitor design pattern allows simple extension by new processors.
• All methods of a processor are grouped together in a visitor object
⇒it is easy to share common code and data

• A visitor object contains for each kind K of trees a method called
caseK that can process trees of that kind.

• The tree contains only a simple generic processor method which
applies a given visitor object.

21

17 Visitable Trees for Expressions

public abstract class Tree {
public abstract void apply(Visitor v);

public static class NumLit extends Tree {
int num;
public NumLit(int num) { ... }
public void apply(Visitor v) {

v.caseNumLit(this);
}

}

22

public static class Operation extends Tree {
Tree left, right;
char op;
public Operation(Tree left, Tree right, char op) { ... }
public void apply(Visitor v) {

v.caseOperation(this);
}

}

public interface Visitor {
void caseOperation(Operation tree);
void caseNumLit(NumLit tree);

}
}

23

18 A Print Visitor

public class Printer implements Tree.Visitor {
public static void print(Tree tree) {

tree.apply(new Printer());
}
public void caseOperation(Tree.Operation tree) {

System.out.print(”(”);
print(tree.left);
System.out.print(” ” + tree.op + ” ”);
print(tree.right);
System.out.print(”)”);

}
public void caseNumLit(Tree.NumLit tree) {

System.out.print(”” + tree.num);
}

}

24

19 A Typical Stack Trace

Printer.print(#∗)
(#∗).apply(new Printer())
new Printer().caseOperation(#∗)
Printer.print(#–)
(#–).apply(new Printer())
new Printer().caseOperation(#–)
Printer.print(#2)
(#2).apply(new Printer())
new Printer().caseNumLit(#2)
System.out.print(2)

Each recursive call is implemented by three nested calls:

Printer.print(tree) → (#–).apply(new Printer())
→ new Printer().caseOperation(#–)

25

20 Coding with Visitors

Make the tree good for visiting:

• Write an apply method for each node.
• Write an interface declaration for the tree visitors

Writing individual visitors:

• Write the caseXxx method for each node type xxx.
• Write one convenience routine (in the example print), which can be

called from outside and for recursion.

26

21 An Evaluation Visitor

• Because we have only one general apply method, we have to pass the
result differently.
• We keep it in a local instance variable val, that eval reads after apply

finished.

public class Evaluator implements Tree.Visitor {
int val;
public static int eval(Tree tree) {

Evaluator ev = new Evaluator();
tree.apply(ev);
return ev.val;

}
public void caseNumLit(Tree.NumLit tree) {

val = tree.num;
}

27

public void caseOperation(Tree.Operation tree) {
switch (tree.op) {

case ’+’:
val = eval(tree.left) + eval(tree.right);
break;

case ’–’:
val = eval(tree.left) – eval(tree.right);
break;

case ’∗’:
val = eval(tree.left) ∗ eval(tree.right);
break;

case ’/’::
val = eval(tree.left) / eval(tree.right);
break;

default: throw new InternalError();
}

}
}

28

22 Driver Class for Visitors

class EvalTest {
public static void main(String args[]) throws Exception {

...
Tree tree = parser.parse();
Printer.print(tree);
System.out.println(” = ” + Evaluator.eval(tree));

}
}

29

23 Which one is better?

• Extensibility

• OO Decomposition makes adding new kinds of nodes easy.
• Visitors make adding of new processors easy.

• Modularity

• OO allows sharing of data and code in a tree node between
phases.

• Visitors allow sharing of data and code between methods of same
processor.

• Which is more important?
• Programming in a group

• Is one person responsible for one kind of node?
• Is one person responsible for one tree processor?

• SUN switched for the new Java compiler also because the old one was
written object oriented.

30

24 Trees in Other Contexts

• Trees with multiple kinds of nodes arise not only in compilation
• They are also found in text layout, structured documents such as

HTML or XML, graphical user interfaces.
• Components of a GUI

• Which method of tree access is used for GUI components?
• Which kind of extension is more common?

31

25 Extensibility

Compiler
• Operations

• type-check
• translate to Pentium
• translate to SPARC
• optimize
• find uninitialized vars

• Kinds
• Ident
• Numeric literal
• String literal
• If statement

GUI
• Operations

• redisplay
• move
• iconize
• highlight

• Kinds
• Scrollbar
• Menu
• Canvas
• Dialogbox
• Statusbar

32

26 Optimization: Reusing the Visitor

• Creating a new visitor object for every invocation is expensive.
• One routine is globally available and creates a new visitor.
• Another routine is local and reuses the visitor.

• More efficient
• Allows visitor - global data

33

27 Optimization: Reusing the Visitor

public class Printer implements Tree.Visitor {
public static void print(Tree tree) { tree.apply(new Printer()); }
protected void printRec(Tree tree) { tree.apply(this); }
public void caseOperation(Tree.Operation tree) {

System.out.print(”(”);
printRec(tree.left);
System.out.print(” ” + tree.op + ” ”);
printRec(tree.right);
System.out.print(”)”);

}
public void caseNumLit(Tree.NumLit tree) { ... }

}

34

28 Visitor Global Data

public class Printer implements Tree.Visitor {
PrintStream p;
public Printer(PrintStream p) { this.p = p; }
public static void print(Tree tree, PrintStream p) {

tree.apply(new Printer(p));
}
protected void printRec(Tree tree) { tree.apply(this); }
public void caseOperation(Tree.Operation tree) {

p.print(”(”);
printRec(tree.left);
p.print(” ” + tree.op + ” ”);
printRec(tree.right);
p.print(”)”);

}
public void caseNumLit(Tree.NumLit tree) { ... }

}

35

29 Summary

• We use an abstract syntax to define the internal data structure of the
compiler (the abstract syntax tree)
• Because it serves a different purpose, it is usually a good idea to

choose it different from the concrete syntax.
• There are two ways of encoding the operations on the tree

• object-oriented
• visitors

• For compilers visitors are the better choice.

36

	Part V: Abstract Syntax
	Syntax Trees
	Abstract Syntax / Concrete Syntax
	Abstract Syntax Tree
	Abstract Syntax Tree (2)
	Abstract Syntax Tree (3)
	Constructing Trees in the Parser
	Constructing Trees(2)
	Using Trees
	Example: Expressions
	Object-oriented Decomposition
	Object-oriented Decomposition
	A Driver Class
	A Typical Stack Trace
	Extensibility
	Visitors
	Visitable Trees for Expressions
	A Print Visitor
	A Typical Stack Trace
	Coding with Visitors
	An Evaluation Visitor
	Driver Class for Visitors
	Which one is better?
	Trees in Other Contexts
	Extensibility
	Optimization: Reusing the Visitor
	Optimization: Reusing the Visitor
	Visitor Global Data
	Summary

