
1 Problems with Semaphores

• Errors in concurrent programs are difficult to find (especially if they
relate to concurrency issues).

• We need to consider interleaving of different threads.
• The control-flow is non-deterministic.
• We don’t know exactly, what happens.
• Errors are not reproducable.

• Incorrect use of semaphores results in difficult errors.
• One misbehaved thread is enough to destroy everything.

Q: Which of the above examples destroys mutual exclusion?

Q: Which of the examples may lead to a deadlock?
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• We accidentally exchange mutex.P() and mutex.V().
mutex.V();

criticalSection
mutex.P();

• We accidentally use one incorrect:
mutex.P();

criticalSection
mutex.P();

• or
mutex.V();

criticalSection
mutex.V();

• We accidentally forget one:
mutex.P();

criticalSection
• or

criticalSection
mutex.V();

2



2 Monitors

• A monitor presents a set of programmer-defined operations, that are
provided with mutal exclusion.

• In Java pseudo-code:
monitor name {

// variable declarations
public entry void m1() { ... }
public entry void m2() { ... }

}
• In the monitor we can access only monitor variables, parameters to

the call, and local variables.
• All procedures defined in the monitor are accessed exclusively.
• Only one thread can be active in the monitor.
• If m1() is called and then m2() is called, before m1 returns, m2 will

block.
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3 Conditions

• We have special variables of type condition.
• If we have a defintion

condition x,y;

then we have two operations on them available:
• x.wait(). This suspends the current thread, until another thread

invokes
• x.signal(). This operation resumes exactly one thread.
• If we suspend a thread it will be blocked until it is resumed.
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4 signal and wait

• Suppose P calls x.signal and Q is waiting for x.
• Now both threads could do something in the monitor, but of course

we cannot allow both to continue!
• We have two possiblities:

• Signal-and-Wait: P has to wait.
• Signal-and-Continue: Q has to wait.

• Both methods have advantages.
• P is already executing, so Signal-and-Continue seems more reasonable.
• However, by the time Q is resumed, the logical condition may no

longer hold.
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5 Philosophers again

• We distinguish three states for a philosopher, THINKING, HUNGRY,
and EATING.
• We store the states in an array int[ ] state = new int[5];

• We set state[i]=EATING only if philosopher i is HUNGRY and both
neigbors are not EATING.

• For that we declare condition[ ] self = new condition[5] .
• A philosopher i, who wants to eat (in state HUNGRY) waits on self[i].
• The routine testCondition(i) checks whether the condition is fulfilled.

If that is the case it sets the state to EATING and calls signal.
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monitor diningPhilosophers {
int[ ] state = new int[5];
static final int THINKING = 0;
static final int HUNGRY = 1;
static final int EATING = 2;
condition[ ] self = new condition[5];

public diningPhilosophers {
for (int i = 0; i < 5; i ++)

state[i] = THINKING;
}

public entry void pickUp(int i) {
state[i] = HUNGRY;
testCondition(i);
if (state[i] != EATING)

self[i].wait;
}
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public entry void putDown(int i) {
state[i] = THINKING;
testCondition((i + 4) % 5);
testCondition((i + 4) % 5);

}

private testCondition(int i) {
if (state[(i+4) %5 ] != EATING

&& state[i] = HUNGRY
&& state[(i+1) %5 ] != EATING) {
state[i] = EATING;
self[i].signal;

}
}

}
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6 Is it working?

A philosopher now does

dp.pickUp(i);
eat();
dp.putDown(i);

If this is the only way dp.pickUp(i), eat(), and dp.putDown(i) are called.

• No two neighbors can eat simultaneously.
• No deadlock can occur.
• However, a philosopher can starve.

Q: How can we assure ourselves of this?
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7 Solution

Mutual exclusion:

• Before we set state[i] = EATING we check, that the two neighbors are
not eating.
• No one could modify the states of the neighbors in between because

we do it in one monitor routine.

Deadlock:

• A lock is never kept in a loop.
• If a thread T is waiting long for a thread T’, then T is a HUNGRY

philosopher and T’ is EATING.
• Then T’ does not wait.

Starving:

• If the philosophers 1 and 3 eat a lot, philosopher 2 might stay hungry
and starve.
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8 Java Synchronization

The original bounded buffer solution had two problems:

• The race condition on the variable count

• If one of the threads had to wait, they used busy-waiting in a loop.

We want to find a Java solution, that resolves both problems.

Java synchronisation works almost like a monitor.
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9 Locks

• A lock can be imagined as a door with a key.
• acquiring the lock means getting the key.
• releasing the lock means putting the key back.
• a lock is available if the key is there for taking.
• The door is always locked, so only the key-owner can pass it.
• Each object in Java has such a lock associated with it.

12



10 synchronized

Java has a keyword synchronized, which is used for synchronization
purposes.

• Each object in Java has a lock associated with it.
• In a normal method call the lock is ignored.
• If a method is declared synchronized, calling the method requires

acquiring that lock.
• There is an entry set for the lock of an object.
• It represents the threads waiting for the lock to become available.
• If the lock is available at a call, the method acquires the lock and

continues.
• On return it releases the lock again.
• If the lock is not available at a call, the thread is put in the entry set.
• If a lock is released and the entry set is non-empty, one of the threads

in the entry set acquires the lock and continues.
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11 Bounded Buffers again

We use the lock of the bounded buffer object.
synchronized void add(Object o) {

while (count == BUFFER SIZE)
yield();

count = count + 1;
buffer[in] = o;
in = (in + 1) % BUFFER SIZE;

}
synchronized Object remove(Object o) {

while (count == 0)
yield();

count = count – 1;
Object o = buffer[out];
out = (out + 1) % BUFFER SIZE;
return o;

}
This solves the race condition on the variable count. Q: What would happen?
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12 wait and notify

Java provides two method-calls, wait() and notify(), that are very similar to
wait() and signal() in the monitor.

• Every object also has a wait set.
• If a thread calls wait(),

• It releases the lock for the object.
• The state of the thread is Blocked.
• The thread is placed in the wait set for the object.

• If a thread calls notify()

• An arbitrary thread T from the wait set is moved to its entry set.
• The state of T becomes Runnable
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13 Solution

synchronized void add(Object o) {
while (count == BUFFER SIZE) {

try {
wait();

catch (InterruptedException e) { }
}
count = count + 1;
buffer[in] = o;
in = (in + 1) % BUFFER SIZE;
notify();

}
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synchronized Object remove() {
while (count == 0) {

try {
wait();

catch (InterruptedException e) { }
}
count = count – 1;
Object o = buffer[out];
out = (out + 1) % BUFFER SIZE;
notify();
return o;

}

For now we don’t care about the InterruptedException.
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14 An example run

• We assume, that the buffer is full, and the lock available.
• The producer calls add().

• The lock is available and it enters the method.
• It sees, that the buffer is full and calls wait.
• This releases the lock, makes the producer blocked and puts the

producer in the wait set.
• The consumer ultimately calls remove().

• The lock is available and it enters the method.
• It removes an item from the buffer.
• it calls notify().
• This moves the producer from the wait set to the entry set and

makes it runnable.
• The consumer exits remove() and releases the lock.
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• When the producer runs again it tries to acquire the lock.

• If it succeeds, it continues from the wait() call.
• It checks the condition of the while-loop, succeeds, and adds an

item to the buffer.
• notify() is ignored, since there is nothing in the wait set.
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15 Readers-Writers again

• readerCount tells us, how many readers are in the database.
• dbWriting tells, whether we have a writers in the database

private int readerCount;
private boolean dbWriting;

public Database() {
readerCount = 0;
dbWriting = false;

}
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public synchronized void startRead() {
while (dbWriting == true) {

try {
wait();

catch (InterruptedException e) { }
}
readerCount ++;

}

public synchronized void endRead() {
readerCount —-;
notifyAll();

}
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public synchronized void startWrite() {
while (dbReading == true || dbWriting == true) {

try {
wait();

catch (InterruptedException e) { }
}
dbWriting = true;

}

public synchronized void endWrite() {
dbWriting = false;
notifyAll();

}
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16 notifyAll

• Before notify() took a thread from the wait set to the entry set.
• Now notifyAll() takes all the threads from the wait set to the entry set.

Why do we need that?

• Before we had always exactly one thread in the wait set of an object.
• Here we may have many threads in one wait set.
• Also we have different conditions to wait for.

Q: What would happen if we replace one of them by notify

If notify works then notifyAll works as well, but it may be less efficient.
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17 Block synchronization

• Java not only allows to synchronize complete methods, but also blocks.
• The following is equivalent to declaring someMethod synchronized.

public void someMethod() {
synchronized(this) {

// body
}

}
• synchronized(o) { ... } tries to acquire the lock of o. After acquiring

it, it executes the block and releases the lock.
• Inside such a block we may use o.wait() and o.notify().
• This allows us to make synchronization more fine-grained.

• We have less blocking.
• More work synchronizing.
• We often have to find this trade-off.
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18 Other things to be aware of

• A thread that owns the lock for an object can enter other
synchronized methods or blocks for that object.
• A thread can nest synchronized method invocations for different

objects. So it can own locks for more than one object.
• If a method is not declared synchronized it can be called, even if

another thread is executing a synchronized method.
• If the wait set is empty, a call to notify() has no effect.
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