
1 Problems with Semaphores

• Errors in concurrent programs are difficult to find (especially if they
relate to concurrency issues).

• We need to consider interleaving of different threads.
• The control-flow is non-deterministic.
• We don’t know exactly, what happens.
• Errors are not reproducable.

• Incorrect use of semaphores results in difficult errors.
• One misbehaved thread is enough to destroy everything.

Q: Which of the above examples destroys mutual exclusion?

Q: Which of the examples may lead to a deadlock?

1

• We accidentally exchange mutex.P() and mutex.V().
mutex.V();

criticalSection
mutex.P();

• We accidentally use one incorrect:
mutex.P();

criticalSection
mutex.P();

• or
mutex.V();

criticalSection
mutex.V();

• We accidentally forget one:
mutex.P();

criticalSection
• or

criticalSection
mutex.V();

2

2 Monitors

• A monitor presents a set of programmer-defined operations, that are
provided with mutal exclusion.

• In Java pseudo-code:
monitor name {

// variable declarations
public entry void m1() { ... }
public entry void m2() { ... }

}
• In the monitor we can access only monitor variables, parameters to

the call, and local variables.
• All procedures defined in the monitor are accessed exclusively.
• Only one thread can be active in the monitor.
• If m1() is called and then m2() is called, before m1 returns, m2 will

block.

3

3 Conditions

• We have special variables of type condition.
• If we have a defintion

condition x,y;

then we have two operations on them available:
• x.wait(). This suspends the current thread, until another thread

invokes
• x.signal(). This operation resumes exactly one thread.
• If we suspend a thread it will be blocked until it is resumed.

4

4 signal and wait

• Suppose P calls x.signal and Q is waiting for x.
• Now both threads could do something in the monitor, but of course

we cannot allow both to continue!
• We have two possiblities:

• Signal-and-Wait: P has to wait.
• Signal-and-Continue: Q has to wait.

• Both methods have advantages.
• P is already executing, so Signal-and-Continue seems more reasonable.
• However, by the time Q is resumed, the logical condition may no

longer hold.

5

5 Philosophers again

• We distinguish three states for a philosopher, THINKING, HUNGRY,
and EATING.
• We store the states in an array int[] state = new int[5];

• We set state[i]=EATING only if philosopher i is HUNGRY and both
neigbors are not EATING.

• For that we declare condition[] self = new condition[5] .
• A philosopher i, who wants to eat (in state HUNGRY) waits on self[i].
• The routine testCondition(i) checks whether the condition is fulfilled.

If that is the case it sets the state to EATING and calls signal.

6

monitor diningPhilosophers {
int[] state = new int[5];
static final int THINKING = 0;
static final int HUNGRY = 1;
static final int EATING = 2;
condition[] self = new condition[5];

public diningPhilosophers {
for (int i = 0; i < 5; i ++)

state[i] = THINKING;
}

public entry void pickUp(int i) {
state[i] = HUNGRY;
testCondition(i);
if (state[i] != EATING)

self[i].wait;
}

7

public entry void putDown(int i) {
state[i] = THINKING;
testCondition((i + 4) % 5);
testCondition((i + 4) % 5);

}

private testCondition(int i) {
if (state[(i+4) %5] != EATING

&& state[i] = HUNGRY
&& state[(i+1) %5] != EATING) {
state[i] = EATING;
self[i].signal;

}
}

}

8

6 Is it working?

A philosopher now does

dp.pickUp(i);
eat();
dp.putDown(i);

If this is the only way dp.pickUp(i), eat(), and dp.putDown(i) are called.

• No two neighbors can eat simultaneously.
• No deadlock can occur.
• However, a philosopher can starve.

Q: How can we assure ourselves of this?

9

7 Solution

Mutual exclusion:

• Before we set state[i] = EATING we check, that the two neighbors are
not eating.
• No one could modify the states of the neighbors in between because

we do it in one monitor routine.

Deadlock:

• A lock is never kept in a loop.
• If a thread T is waiting long for a thread T’, then T is a HUNGRY

philosopher and T’ is EATING.
• Then T’ does not wait.

Starving:

• If the philosophers 1 and 3 eat a lot, philosopher 2 might stay hungry
and starve.

10

8 Java Synchronization

The original bounded buffer solution had two problems:

• The race condition on the variable count

• If one of the threads had to wait, they used busy-waiting in a loop.

We want to find a Java solution, that resolves both problems.

Java synchronisation works almost like a monitor.

11

9 Locks

• A lock can be imagined as a door with a key.
• acquiring the lock means getting the key.
• releasing the lock means putting the key back.
• a lock is available if the key is there for taking.
• The door is always locked, so only the key-owner can pass it.
• Each object in Java has such a lock associated with it.

12

10 synchronized

Java has a keyword synchronized, which is used for synchronization
purposes.

• Each object in Java has a lock associated with it.
• In a normal method call the lock is ignored.
• If a method is declared synchronized, calling the method requires

acquiring that lock.
• There is an entry set for the lock of an object.
• It represents the threads waiting for the lock to become available.
• If the lock is available at a call, the method acquires the lock and

continues.
• On return it releases the lock again.
• If the lock is not available at a call, the thread is put in the entry set.
• If a lock is released and the entry set is non-empty, one of the threads

in the entry set acquires the lock and continues.

13

11 Bounded Buffers again

We use the lock of the bounded buffer object.
synchronized void add(Object o) {

while (count == BUFFER SIZE)
yield();

count = count + 1;
buffer[in] = o;
in = (in + 1) % BUFFER SIZE;

}
synchronized Object remove(Object o) {

while (count == 0)
yield();

count = count – 1;
Object o = buffer[out];
out = (out + 1) % BUFFER SIZE;
return o;

}
This solves the race condition on the variable count. Q: What would happen?

14

12 wait and notify

Java provides two method-calls, wait() and notify(), that are very similar to
wait() and signal() in the monitor.

• Every object also has a wait set.
• If a thread calls wait(),

• It releases the lock for the object.
• The state of the thread is Blocked.
• The thread is placed in the wait set for the object.

• If a thread calls notify()

• An arbitrary thread T from the wait set is moved to its entry set.
• The state of T becomes Runnable

15

13 Solution

synchronized void add(Object o) {
while (count == BUFFER SIZE) {

try {
wait();

catch (InterruptedException e) { }
}
count = count + 1;
buffer[in] = o;
in = (in + 1) % BUFFER SIZE;
notify();

}

16

synchronized Object remove() {
while (count == 0) {

try {
wait();

catch (InterruptedException e) { }
}
count = count – 1;
Object o = buffer[out];
out = (out + 1) % BUFFER SIZE;
notify();
return o;

}

For now we don’t care about the InterruptedException.

17

14 An example run

• We assume, that the buffer is full, and the lock available.
• The producer calls add().

• The lock is available and it enters the method.
• It sees, that the buffer is full and calls wait.
• This releases the lock, makes the producer blocked and puts the

producer in the wait set.
• The consumer ultimately calls remove().

• The lock is available and it enters the method.
• It removes an item from the buffer.
• it calls notify().
• This moves the producer from the wait set to the entry set and

makes it runnable.
• The consumer exits remove() and releases the lock.

18

• When the producer runs again it tries to acquire the lock.

• If it succeeds, it continues from the wait() call.
• It checks the condition of the while-loop, succeeds, and adds an

item to the buffer.
• notify() is ignored, since there is nothing in the wait set.

19

15 Readers-Writers again

• readerCount tells us, how many readers are in the database.
• dbWriting tells, whether we have a writers in the database

private int readerCount;
private boolean dbWriting;

public Database() {
readerCount = 0;
dbWriting = false;

}

20

public synchronized void startRead() {
while (dbWriting == true) {

try {
wait();

catch (InterruptedException e) { }
}
readerCount ++;

}

public synchronized void endRead() {
readerCount —-;
notifyAll();

}

21

public synchronized void startWrite() {
while (dbReading == true || dbWriting == true) {

try {
wait();

catch (InterruptedException e) { }
}
dbWriting = true;

}

public synchronized void endWrite() {
dbWriting = false;
notifyAll();

}

22

16 notifyAll

• Before notify() took a thread from the wait set to the entry set.
• Now notifyAll() takes all the threads from the wait set to the entry set.

Why do we need that?

• Before we had always exactly one thread in the wait set of an object.
• Here we may have many threads in one wait set.
• Also we have different conditions to wait for.

Q: What would happen if we replace one of them by notify

If notify works then notifyAll works as well, but it may be less efficient.

23

17 Block synchronization

• Java not only allows to synchronize complete methods, but also blocks.
• The following is equivalent to declaring someMethod synchronized.

public void someMethod() {
synchronized(this) {

// body
}

}
• synchronized(o) { ... } tries to acquire the lock of o. After acquiring

it, it executes the block and releases the lock.
• Inside such a block we may use o.wait() and o.notify().
• This allows us to make synchronization more fine-grained.

• We have less blocking.
• More work synchronizing.
• We often have to find this trade-off.

24

18 Other things to be aware of

• A thread that owns the lock for an object can enter other
synchronized methods or blocks for that object.
• A thread can nest synchronized method invocations for different

objects. So it can own locks for more than one object.
• If a method is not declared synchronized it can be called, even if

another thread is executing a synchronized method.
• If the wait set is empty, a call to notify() has no effect.

25

	Problems with Semaphores
	Monitors
	Conditions
	{sf signal} and {sf wait}
	Philosophers again
	Is it working?
	Solution
	Java Synchronization
	Locks
	{sf {bf synchronized}}
	Bounded Buffers again
	{sf wait} and {sf notify}
	Solution
	An example run
	Readers-Writers again
	{sf notifyAll}
	Block synchronization
	Other things to be aware of

