
1 Synchronisation

• The bounded buffer problem.
• Critical regions, mutual exclusion.
• Two-task solutions
• Semaphores
• Other classical problems
• Monitors
• Java synchronization

We will consider threads only.

• From a synchronization perspective, the difficulty is the same.
• Communication is much easier with shared memory.

1

2 Bounded Buffers

• We want to implement a buffer of a given size.
• There is a method void add(Object o), which adds an Object to the

buffer.
• There is a method Object remove(), which takes an Object out of the

buffer.

• We assume that two threads run at the same time.
• One thread, the producer calls add repeatedly.
• The other thread, the consumer calls remove repeatedly.

2

3 Bounded Buffers (2)

• buffer is an array that keeps the objects.
• in is the place, where to put the next element.
• out is the place, where to get the next element.
• count is the number of elements in the buffer.

class BoundedBuffer {
static final int BUFFER SIZE = 128;
int count, in , out;
Object[] buffer;

public BoundedBuffer() {
count = 0;
in = 0;
out = 0;
buffer = new Object[BUFFER SIZE];

}

3

void add(Object o) {
while (count == BUFFER SIZE)

;
count = count + 1;
buffer[in] = o;
in = (in + 1)

}

Object remove() {
while (count == 0)

;
count = count – 1;
Object o = buffer[out];
out = (out + 1)

}

Q: What is the problem with this solution?

4

4 The Problem

• The increment and decrement of count might happen concurrently.
• If we have bad luck the increment and decrement together make one

increment.
• They should cancel.
• This is unacceptable.

This situation is called a race condition.

A side-remark:

• add waits until the buffer is not full, then adds.
• remove waits until the buffer is non-empty, then removes.
• Waiting in a loop like this is called busy waiting.

5

5 Critical Section

• When multiple threads operate on shared data, we have to control
access to that data.
• Some parts of the code of the different threads shouldn’t be executed

concurrently.
• We call these parts critical sections.
• The idea is, that we make the execution of critical sections exclusive in

time.
• Never should two threads be in a critical section at the same time.

Q: What are the critical sections in the bounded buffer example.

6

6 Requirements

A programming solution two the critical section problem must satisfy the
following three requirements:

• Mutual Exclusion: If a thread T is in its critical section, no other
thread is in its critical section.
• Progress: If no thread is executing in its critical section and some

threads want to enter their critical sections, then one of them will
ultimately be allowed to enter.

• Bounded Waiting : There exists a bound on the number of times, that
other threads are allowed to enter their critical sections after a thread
has made a request to enter a critical section.

7

7 Simple-minded Solutions

Allow any thread to enter its critical section at any time?

Q: Which requirement would not be met?

Never allow any thread to enter its critical section?

Q: Which requirement would not be met?

Q: Can you think of something which does not meet bounded waiting?

8

8 Two Threads

We first restrict the problem to two threads.

• The threads are called T0 and T1.
• For thread Ti, the other thread is T1−i.
• Before entering a critical section, a thread must call enterCritical(int t)

with its own number.
• After leaving a critical section, a thread must call leaveCritical(int t)

with its own number.
class MutualExclusion {

public MutualExclusion() { ... }
public void enterCritical(int t) { ... }
public void leaveCritical(int t) { ... }

}
The goal is to find an implementation for MutualExclusion that guaranties
mutual exclusion, progress, and bounded waiting.

9

void add(Object o) {
while (count == BUFFER SIZE)

;
enterCritical(0);
count = count + 1;
leaveCritical(0);
buffer[in] = o;
in = (in + 1)

}

Object remove() {
while (count == 0)

;
enterCritical(1);
count = count – 1;
leaveCritical(1);
Object o = buffer[out];
out = (out + 1)

}

10

9 Assumptions

We assume, that the basic machine instructions load and store are executed
atomically.

If a load and a store are executed concurrently, then the load will get the
old or the new value, but not a mixture.

Q: Is it also reasonable to assume, that an increment operation incr is
executed atomically?

11

class MutualExclusion1 {
private volatile int turn;

public MutualExclusion1() {
turn = 0;

}
public void enterCritical(int t) {

while (turn != t)
Thread.yield();

}
public void leaveCritical(int t) {

turn = 1 – t;
}

}
• Thread.yield() is a form of non-busy waiting.
• volatile tells the compiler not keep turn in a register.

12

class MutualExclusion2 {
private volatile boolean[2] flag = new boolean[2];
private volatile int turn;

public MutualExclusion2() {
flag[0] = false;
flag[1] = false;

}
public void enterCritical(int t) {

int other = 1 – t;
flag[t] = true;
while (flag[other] == true)

Thread.yield();
}
public void leaveCritical(int t) {

flag[t] = false;
}

}

13

class MutualExclusion3 {
private volatile boolean[2] flag = new boolean[2];

public MutualExclusion3() {
flag[0] = false;
flag[1] = false;
turn = 0;

}
public void enterCritical(int t) {

int other = 1 – t;
flag[t] = true;
turn = other;
while (flag[other] == true && turn == other)

Thread.yield();
}
public void leaveCritical(int t) {

flag[t] = false;
}

}
14

10 Semaphores

• The above solution is not easy to generalize to complex problems.
• To overcome this, we use a synchronisation tool called semaphore.
• A semaphore is an integer variable, that is only accessed

• At initialization
• Through operation P

• Through operation V

P(S) {
while (S ≤ 0)

;
S ––

}
V(S) {

S ++;
}

15

11 Semaphore Usage

• Often we use a semaphore only with values 0 and 1.
• We call it a binary semaphores.
• We can use a binary semaphore to guard critical sections.

(similar to enterCritical and leaveCritical).

P(S);
criticalSection

V(S);

• Before entering the critical section S is set to 0.
• Now, no other thread can enter a critical section guarded by S.
• After finishing the critical section, S is set to 1 again.
• Now the next thread can enter its critical section.

16

12 Using Counting Semaphores

• Semaphores, where we also use higher values are called counting
sempaphores
• A counting semaphore is useful, if we have a finite number of resources.
• The semaphore is initialized to the number of resources.
• If a thread wishes to use a resource it calls P.
• If it has released the resource again it calls V.
• So S is always the number of available resources.

17

13 Bounded Buffer with Semaphores

class BoundedBuffer {
static final int BUFFER SIZE = 128;
int count, in , out;
Object[] buffer;
Semaphore mutex, empty, full;

public BoundedBuffer() {
count = 0;
in = 0;
out = 0;
buffer = new Object[BUFFER SIZE];
mutex = new Semaphore(1);
empty = new Semaphore(BUFFER SIZE);
full = new Semaphore(0);

}

18

void add(Object o) {
empty.P();
mutex.P();

count = count + 1;
buffer[in] = o;
in = (in + 1)

mutex.V();
full.V();

}

19

Object remove() {
full.P();
mutex.P();

count = count – 1;
Object o = buffer[out];
out = (out + 1)

mutex.V();
empty.V();

}
}

20

14 Inside a Semaphore

• Modifications to the integer value must be executed indivisibly.
• Moreover, testing S and decrementing it must also be executed

without interruption.
• We can make the critical section more explicit.

P(S) { V(S) {
boolean finished = false; S ++;
while (!finished) { }

if (S > 0) {
S ––;
finished = true;

}
}

}

21

15 Implementing a Semaphore

• We could implement semaphores using a two task solutions.
• The main disadvantage of these solutions and the semaphore

definition given above is, that they require busy waiting
• If one thread has to wait for another thread to leave the critical

section, it loops.
• This is a waste of CPU-cycles.
• We call a semaphore with busy waiting a spinlock.

• Spinlocks may be useful in a multiprocessor environment.
• They don’t need a context switch.
• If the waiting time is short, waiting might be more efficient than

a context switch.
• To overcome the need for busy waiting we modify P and S.
• We define a semaphore as an integer value and a list of processes.

22

P(S) {
value ––;
if (value < 0) {

add this thread to list for semaphore
block;

}
}

V(S) {
value ++;
if (value ≤ 0)

remove a thread T from list for semaphore
wakeup (T);

}
• If a thread calls P, when value ≤ 0, it enters itself into the list and

blocks.
• If another thread calls V and value ≤ 0 (threads waiting), it wakes up

one of the threads.

23

16 More Implementation Issues

• The critical aspect is to execute P and V well, that is respecting their
critical zones.
• In a one processor environment, we can prohibit interrupts in

semaphores.
• In a multiprocessor environment prohibiting interrupts does not work.
• Instructions from different processors can be arbitraryly interleaved.
• If the hardware doesn’t have special instructions, we have to

implement one of the two-task solutions.

Q: We have again busy waiting. Is this a problem here?

24

17 Not a Problem Here

• We only wait for another thread to leave its critical section within a
semaphore.
• These critical sections are very short.
• Busy waiting occurs rarely, and then for a short time.
• A critical section of an application program might be very long.
• But we do not need to wait for that.

25

18 Deadlocks

• When two or more threads are waiting for an event that can only be
caused by them, they will wait forever.

A() { B() {
S.P(); Q.P();
Q.P(); S.P();

... ...
Q.V(); S.V();
S.V(); Q.V();

} }
• Assume A runs, and calls S.P(), returns.
• Then B runs, and calls Q.P(), returns.
• None of the two will come any further.
• Such a situation is called a deadlock

26

19 The Readers-Writers Problem

• A data base is to be shared among several threads.
• Some threads may want to read from the data base.
• Some threads may want to write to the data base.
• We call these threads readers and writers
• Two readers accesing the data base simultaneously do no harm.
• However, if a writer and some other thread access the data base at the

same time, bad things may happen.
• To ensure that this doesn’t happen we require that writers have

exclusive access to the data base.
• This is called the readers-writers problem

27

20 Variants of the Readers-Writers Problem

• No reader will be kept waiting until a writer has obtained access to
the data base.
• If a writer is waiting, no reader gets access, until the writer is finished.
• First come, first serve.

Q: What are the advantages/disadvantages of the variants?

28

21 Starvation

• We speak of starvation when one of the threads is kept in a semaphore
forever, although no deadlock exists.

• If we always have writers waiting, readers will starve in the example,
where writers have priority.

• This happens, although the semaphore will change from 0 to 1 and
back all the time.

• In a deadlock, there is at least one resource, that doesn’t get released
any more.

29

class database {
Semaphore mutex;
Semaphore db;
int readerCount;

public database () {
readerCount = 0;
mutex = new Semaphore(1);
db = new Semaphore(1);

}

void startRead() {
mutex.P();
readerCount ++;
if (readerCount == 1)

db.P();
mutex.V();

}

30

void endRead() {
mutex.P();
readerCount ––;
if (readerCount == 0)

db.V();
mutex.V();

}

void startWrite() {
db.P();

}
void endWrite() {

db.V();
}

}

31

22 The Dining Philosopher Problem

• Five philosophers spend their lives thinking and eating.
• The philosophers share a round table.
• Each philosopher has its own plate, and their is a bowl of rice in the

middle.
• There are five single chopsticks, one between each two plates.
• If a philosopher wants to eat, he/she tries to pick the chop sticks to

his/her left and right (one after another!).
• After eating he/she puts the chopsticks back again.

32

class philosophers {
Semaphore[5] sticks;

startEat(int p) {
sticks[i].P();
sticks[(i + 1) % 5].P()

}

stopEat(int p) {
sticks[i].V();
sticks[(i + 1) % 5].V()

}
}

Q: What is the problem?

33

23 The Dining Philosopher Problem(2)

If every philosopher picks the left chop stick, we have a deadlock!

What can we do

• Allow at most 4 philosophers sitting simultaneously at a table.
• Allow a philosopher to pick up the chopsticks only if both are

available.
• Use an asymmetric solution (odd philosophers take the left chopstick

first, even philosophers the right one).

34

	Synchronisation
	Bounded Buffers
	Bounded Buffers (2)
	The Problem
	Critical Section
	Requirements
	Simple-minded Solutions
	Two Threads
	Assumptions
	Semaphores
	Semaphore Usage
	Using Counting Semaphores
	Bounded Buffer with Semaphores
	Inside a Semaphore
	Implementing a Semaphore
	More Implementation Issues
	Not a Problem Here
	Deadlocks
	The Readers-Writers Problem
	Variants of the Readers-Writers Problem
	Starvation
	The Dining Philosopher Problem
	The Dining Philosopher Problem(2)

