1 Synchronisation

e The bounded buffer problem.

e (Critical regions, mutual exclusion.
e Two-task solutions

e Semaphores

e Other classical problems

e Monitors

e Java synchronization
We will consider threads only.

e From a synchronization perspective, the difficulty is the same.

e Communication is much easier with shared memory.

2 Bounded Buffers

e We want to implement a buffer of a given size.

e There is a method void add(Object o), which adds an Object to the
buffer.

e There is a method Object remove(), which takes an Object out of the
buffer.

e We assume that two threads run at the same time.
e One thread, the producer calls add repeatedly.

e The other thread, the consumer calls remove repeatedly.

3

Bounded Buffers (2)

buffer is an array that keeps the objects.
in is the place, where to put the next element.
out is the place, where to get the next element.
count is the number of elements in the buffer.
class BoundedBuffer {

static final int BUFFER_SIZE = 128;

int count, in , out;
Object][] buffer;

public BoundedBuffer() {
count = 0
in = 0;
out = 0;
buffer = new Object|[BUFFER_SIZE];

void add(Object o) {
while (count == BUFFER_SIZE)

count = count + 1;
buffer[in] = o;
in = (in + 1)

h

Object remove() {
while (count == 0)

count = count — 1;
Object o = buffer[out];
out = (out + 1)

}

Q: What is the problem with this solution?

4 The Problem

e The increment and decrement of count might happen concurrently.

e If we have bad luck the increment and decrement together make one
increment.

e They should cancel.

e This is unacceptable.

This situation is called a race condition.
A side-remark:

e add waits until the buffer is not full, then adds.
e remove waits until the buffer is non-empty, then removes.

e Waiting in a loop like this is called busy waiting.

5 Critical Section

e When multiple threads operate on shared data, we have to control
access to that data.

e Some parts of the code of the different threads shouldn’t be executed
concurrently.

e We call these parts critical sections.

e The idea is, that we make the execution of critical sections exclusive in
time.

e Never should two threads be in a critical section at the same time.

(Q: What are the critical sections in the bounded buffer example.

6 Requirements

A programming solution two the critical section problem must satisfy the

following three requirements:

o Mutual Exclusion: If a thread T is in its critical section, no other
thread is in its critical section.

e Progress: If no thread is executing in its critical section and some
threads want to enter their critical sections, then one of them will
ultimately be allowed to enter.

e Bounded Waiting: There exists a bound on the number of times, that
other threads are allowed to enter their critical sections after a thread

has made a request to enter a critical section.

7 Simple-minded Solutions

Allow any thread to enter its critical section at any time?
(Q: Which requirement would not be met?

Never allow any thread to enter its critical section?

Q: Which requirement would not be met?

QQ: Can you think of something which does not meet bounded waiting?

8 Two Threads

We first restrict the problem to two threads.

e The threads are called Ty and Tj.

e For thread T;, the other thread is 77 _;.

e Before entering a critical section, a thread must call enterCritical(int t)
with its own number.

e After leaving a critical section, a thread must call leaveCritical(int t)

with its own number.

class MutualExclusion {
public MutualExclusion() { ... }
public void enterCritical(int t) { ... }
public void leaveCritical(int t) { ... }

}

The goal is to find an implementation for MutualExclusion that guaranties

mutual exclusion, progress, and bounded waiting.

9

void add(Object o) {
while (count == BUFFER_SIZE)

enterCritical(0);
count = count + 1;
leaveCritical(0);
buffer[in] = o;

in = (in + 1)

}

Object remove() {
while (count == 0)

enterCritical(1);

count = count — 1;
leaveCritical(1);
Object o = buffer[out];
out = (out + 1)

10

9 Assumptions

We assume, that the basic machine instructions load and store are executed

atomically.

If a load and a store are executed concurrently, then the load will get the

old or the new value, but not a mixture.

Q: Is it also reasonable to assume, that an increment operation incr is

executed atomically?

11

class MutualExclusionl {
private volatile int turn;

public MutualExclusion1() {
turn = 0:
}

public void enterCritical(int t) {
while (turn !'=t)
Thread.yield();
}

public void leaveCritical(int t) {
turn = 1 — t;
}

}

e Thread.yield() is a form of non-busy waiting.

e volatile tells the compiler not keep turn in a register.

12

class MutualExclusion2 {

private volatile boolean|2] flag = new boolean|2];
private volatile int turn;

public MutualExclusion2() {
flag[0] = false;
flag[1] = false;

}

public void enterCritical(int t) {
int other =1 — t;
flag[t] = true;
while (flag[other] == true)

Thread.yield();

}

public void leaveCritical(int t) {
flag[t] = false;

}

13

class MutualExclusion3 {
private volatile boolean|2] flag = new boolean|2];

public MutualExclusion3() {
flag[0] = false;
flag[1] = false;
turn = 0;

}

public void enterCritical(int t) {
int other =1 — t;
flag[t] = true;
turn = other;
while (flaglother] == true && turn == other)

Thread.yield();

}

public void leaveCritical(int t) {
flag[t] = false;

}

14

10 Semaphores

e The above solution is not easy to generalize to complex problems.
e To overcome this, we use a synchronisation tool called semaphore.
e A semaphore is an integer variable, that is only accessed

e At initialization

e Through operation P
e Through operation V

P(S) {
while (S < 0)

15

11 Semaphore Usage

e Often we use a semaphore only with values 0 and 1.
e We call it a binary semaphores.
e We can use a binary semaphore to guard critical sections.
(similar to enterCritical and leaveCritical).
P(S);
criticalSection
V(S);
e Before entering the critical section S is set to O.
e Now, no other thread can enter a critical section guarded by S.
e After finishing the critical section, S is set to 1 again.
e Now the next thread can enter its critical section.

16

12 Using Counting Semaphores

e Semaphores, where we also use higher values are called counting
sempaphores

e A counting semaphore is useful, if we have a finite number of resources.

e The semaphore is initialized to the number of resources.

e If a thread wishes to use a resource it calls P.

e If it has released the resource again it calls V.

e So S is always the number of available resources.

17

13 Bounded Buffer with Semaphores

class BoundedBuffer {
static final int BUFFER_SIZE = 128;
int count, in , out;
Object][| buffer;
Semaphore mutex, empty, full;

public BoundedBuffer() {
count = 0:
in = 0;
out = 0;
buffer = new Object|[BUFFER_SIZE];
mutex = new Semaphore(1);
empty = new Semaphore(BUFFER_SIZE);
full = new Semaphore(0);

18

void add(Object o) {

empty.P();
mutex.P();

count = count + 1;

buffer[in] = o;
in = (in + 1)

mutex.V();
ful.V();

19

Object remove() {
full.P();
mutex.P();

count = count — 1;
Object o = buffer[out];
out = (out + 1)

mutex.V();
empty.V();

20

14 Inside a Semaphore

e Modifications to the integer value must be executed indivisibly.

e Moreover, testing S and decrementing it must also be executed

without interruption.

e We can make the critical section more explicit.

P(S) {
boolean finished = false;
while (!finished) {
if (S>0) {
S —;

finished = true:

V(S) {
S ++;

}

21

15 Implementing a Semaphore

e We could implement semaphores using a two task solutions.

e The main disadvantage of these solutions and the semaphore
definition given above is, that they require busy waiting

e If one thread has to wait for another thread to leave the critical
section, it loops.

e This is a waste of CPU-cycles.

e We call a semaphore with busy waiting a spinlock.

e Spinlocks may be useful in a multiprocessor environment.

e They don’t need a context switch.
e If the waiting time is short, waiting might be more efficient than

a context switch.
e To overcome the need for busy waiting we modify P and S.

e We define a semaphore as an integer value and a list of processes.

22

P(S) {
value —;
if (value < 0) {
add this thread to list for semaphore
block:

V(S) {
value ++;
if (value < 0)
remove a thread T from list for semaphore
wakeup (T);

}

e If a thread calls P, when value < 0, it enters itself into the list and
blocks.

e If another thread calls V and value < 0 (threads waiting), it wakes up

one of the threads.

23

16 More Implementation Issues

e The critical aspect is to execute P and V well, that is respecting their
critical zones.

e In a one processor environment, we can prohibit interrupts in
semaphores.

e In a multiprocessor environment prohibiting interrupts does not work.

e Instructions from different processors can be arbitraryly interleaved.

e If the hardware doesn’t have special instructions, we have to

implement one of the two-task solutions.

Q: We have again busy waiting. Is this a problem here?

24

17 Not a Problem Here

e We only wait for another thread to leave its critical section within a
semaphore.

e These critical sections are very short.

e Busy waiting occurs rarely, and then for a short time.

e A critical section of an application program might be very long.

e But we do not need to wait for that.

25

18 Deadlocks

e When two or more threads are waiting for an event that can only be
caused by them, they will wait forever.

AQ 1 B() {

S.P(); Q.P();
Q.P(); S.P();
QV(): S.V();
S.V(); Q.V();

} }

e Assume A runs, and calls S.P(), returns.
e Then B runs, and calls Q.P(), returns.
e None of the two will come any further.

e Such a situation is called a deadlock

26

19 The Readers-Writers Problem

e A data base is to be shared among several threads.

e Some threads may want to read from the data base.

e Some threads may want to write to the data base.

e We call these threads readers and writers

e T'wo readers accesing the data base simultaneously do no harm.

e However, if a writer and some other thread access the data base at the
same time, bad things may happen.

e To ensure that this doesn’t happen we require that writers have
exclusive access to the data base.

e This is called the readers-writers problem

27

20 Variants of the Readers-Writers Problem

e No reader will be kept waiting until a writer has obtained access to

the data base.
e If a writer is waiting, no reader gets access, until the writer is finished.

e First come, first serve.

Q: What are the advantages/disadvantages of the variants?

28

21 Starvation

e We speak of starvation when one of the threads is kept in a semaphore
forever, although no deadlock exists.

o If we always have writers waiting, readers will starve in the example,
where writers have priority.

e This happens, although the semaphore will change from 0 to 1 and
back all the time.

e In a deadlock, there is at least one resource, that doesn’t get released

any more.

29

class database {
Semaphore mutex;
Semaphore db;
int readerCount;

public database () {
readerCount = 0;
mutex = new Semaphore(1);
db = new Semaphore(1);

}

void startRead() {
mutex.P();
readerCount +-;
if (readerCount == 1)
db.P();
mutex.V();

30

void endRead() {

mutex.P();
readerCount —;
if (readerCount == 0)
db.V();

mutex.V();

}

void startWrite() {
db.P();

}

void endWrite() {
db.V();

}

31

22 The Dining Philosopher Problem

e F'ive philosophers spend their lives thinking and eating.

e The philosophers share a round table.

e Fach philosopher has its own plate, and their is a bowl of rice in the
middle.

e There are five single chopsticks, one between each two plates.

e If a philosopher wants to eat, he/she tries to pick the chop sticks to
his/her left and right (one after another!).

e After eating he/she puts the chopsticks back again.

32

class philosophers {
Semaphore[5] sticks;

startEat(int p) {
sticks[i].P();
sticks[(i + 1) % 5].P()
i

stopEat(int p) {
sticks[i].V();
sticks[(i + 1) % 5].V()

}

Q: What is the problem?

33

23 The Dining Philosopher Problem(2)

If every philosopher picks the left chop stick, we have a deadlock!

What can we do

e Allow at most 4 philosophers sitting simultaneously at a table.
e Allow a philosopher to pick up the chopsticks only if both are

available.
e Use an asymmetric solution (odd philosophers take the left chopstick

first, even philosophers the right one).

34

	Synchronisation
	Bounded Buffers
	Bounded Buffers (2)
	The Problem
	Critical Section
	Requirements
	Simple-minded Solutions
	Two Threads
	Assumptions
	Semaphores
	Semaphore Usage
	Using Counting Semaphores
	Bounded Buffer with Semaphores
	Inside a Semaphore
	Implementing a Semaphore
	More Implementation Issues
	Not a Problem Here
	Deadlocks
	The Readers-Writers Problem
	Variants of the Readers-Writers Problem
	Starvation
	The Dining Philosopher Problem
	The Dining Philosopher Problem(2)

