
1 Part IX: Concurrency

• Concurrency vs. Distribution, Parallelity.
• Processes & Threads.
• Synchronisation.
• Deadlocks.

1



2 Concurrency

• Concurrency means, that two or more things happen seemingly at the
same time.
• Concurrency may be interesting already on one computer with one

processor.
• The motivation is often that the user of some service wants to do

many things at the same time.
• For example printing one file and editing another and running a

simulation.
• It should seem to happen at the same time, but it’s OK if the

computer switches between the tasks fast enough.
• In the case of printing, editing and simulation this is also more

productive.
• If the computer is just printing (or just running the editor), the CPU

would spend some time waiting for the printer.

2



3 Distribution

• Distribution means that parts of a task happen on different machines.
• The motivation can lie in the distribution of the original problem (e.g.

airline booking system, WWW)
• Another motivation may be saving resources (e.g. one printer/file

server for everyone).
• If we have distribution we practically have concurrency.
• We may have concurrency without distribution.
• Additional issues in distribution are e.g. reliability, local/non-local

data.
• The programmer has to care about the case, where the other

computer is unreachable.
• The programmer has to take care on which computer which data is.

3



4 Parallelity

• Parallelity means that two things happen really at the same time,
either on different machines or on more proccesors on one machine.
• The motivation is often a gain in efficiency.

• numerical calculations
• simulations

• Parallelity implies concurrency.
• We may have concurrency without parallelity.
• The programmer has to take care on which computer which data is.
• Here this is often very important for the efficiency.
• Typically the machines are close to each other, and e.g. reliability is

not an issue.

4



5 Problems of Concurrency

• We will only deal with concurrency.
• Consider the program fragment:

if (a != 0) { b = b / a; }.
• This is reasonable code in a sequential program.
• In a concurrent program at “the same time”

a = 0

might happen.
• Then a division by zero error would still occur.
• Problem: How do we deal with this?
• Once we add concurrency, this affects all the program!

5



6 Processes

• A typical example of a concurrent application is an operating system.
• The user of a computer wants to run more than one application at a

time.
• There is more than one process running concurrently.
• A process is a program in execution. It is active.
• A program is a piece of executable code. I is passive.
• There might exist at the same time more than one process executing

the same program (text editor).

6



7 Process States

A process can be in different states:

• new : This process is just newly created.
• ready : This process is ready to run and only has to wait for its turn to

run.
• running : The process is actually running on the CPU right now. If

there’s only one CPU, only one process is running.
• waiting : The process is waiting for something to happen (i.e. user

input). At the moment it couldn’t possibly run.
• terminated : The process is done.

7



8 Process State Transitions

A process may change its state.

• new to ready: admitted
• ready to running: scheduler dispatch
• running to ready: interrupt
• running to waiting: I/O or wait
• waiting to ready: I/O or wait completion
• running to terminated: exit

8



9 Process Representation

A process is represented in the system by a process control block.

• process id
• process state (ready, running, ...)
• program counter
• CPU registers
• scheduling information
• memory managment information
• IO status information
• accounting information (CPU - time used)
• ...

The exact format depends on the operation system.

9



10 Scheduling

• Only one process is running (in a one processor system).
• There are typically many processes ready. We organize them in the

ready queue.
• Also typically some processes are waiting for I/O. We organize them

in a queue for each device.
• If a process is interrupted or has to leave the running state because

it’s waiting for I/O, we have to decide which process is running next.
• This is the task of the scheduler.

10



11 Scheduler

• The scheduler has to run often enough, to give the parallel impression
to the user.
• If it runs too often, we spent too much time scheduling.
• The scheduler shouldn’t run too long, because again we would spend

too much time scheduling otherwise.
• It should run long enough to make reasonable decisions.
• We have to make a trade-off decisions.
• Some systems have more than one scheduler.
• The short term scheduler runs often and is very fast.
• The long-term scheduler runs less often and takes more time.
• There are often two kind of processes (I/O-bound and CPU-bound

processes)
• It is the task of the scheduler to pick a good mix of them.

11



12 Context Switch

• Exchanging the running process is called a context switch.
• A context switch is pure overhead and should therefore be fast.
• It will typically take 1 to 1000 µs
• This is highly dependent on Hardware support.
• It is often a performance bottleneck.
• That is where threads were invented.

12



13 Threads

A thread is also often called a lightweight process.

• The idea is that some lightweight processes run within one process.
• Each thread has its own thread-id, program counter, registers.
• But all threads share code, data and other resources like open files.
• This is the basic difference to heavyweight processes.

13



14 Thread Advantages

• Economy

• A context switch for threads is much cheaper.
• The same holds for thread creation.
• On Solaris thread creation is about 30 times as fast as process

creation.
• The context switch is about 5 times as fast.

• Responsiveness

• An application can continue running, though part of it is blocking
or performing a lengthy operation.

14



15 Thread Advantages (2)

• Resource sharing (code, memory, I/O)

• We can have several threads in the same address space.
• This allows easy and efficient communication between threads.

• On multiprocessor architectures threads may run on different
processors.

• Here, resource sharing is the natural model, because the
processors actually share memory, ...

15



16 Threaded Applications

Many applications are multithreaded.

Often we want to do things concurrently within one application.

• A Web - Browser

• Downloading a file
• Displaying images

• A word processor

• Building up a graphic
• Reacting to keystrokes
• Spell-checker
• Resource sharing is important (one copy of the text).

16



17 Threaded Applications (2)

We may have many similar tasks.

• A Web - Server

• One single threaded process would make response very bad.
• New process for every request would create many processes with

the same code.
• Threads are faster and a better solution here.
• Here we have resource sharing of code.

17



Java has other uses for threads.

• In Java there is no asynchronous behaviour.
• If a java thread connects to a server it will block until the connections

is made.
• If we had only one thread, the whole application would block until the

connection is made (imagine the server being down).
• The solution is to create a new thread that connects to the server.
• Another thread will check after a while whether the connection was

made and interrupt the other thread in case of no success.

Q: Do we still need processes?

18



18 Process Advantages

• A process needs the code (program) for all of its threads
• Programs can be compiled separately.
• After recompilation of one thread, we have to restart the whole

program.
• A process has separate memory, it may not change memory from

another process.
• For distribution and parallelity this is the natural model.
• Largely independent tasks should be done by separate processes.

19



19 Process Applications

• Application programs.
• X-Server.
• Print-Server.

20



20 Java Threads

• Java has support for threads at a language level.
• Each Java program creates at least one thread (This could be only the

thread running the main routine).
• Java provides classes and commands that allow the developer to

manipulate threads.

21



21 Thread Creation

• The class Thread has a method start, which creates and starts a new
Thread.
• new Thread() would just create a Java Thread object, but would not

actually create a thread.
• When we write code for a thread we extend Thread and override its

run method.
class SimpleThread extends Thread {

public void run() {
System.out.println(”I’m a simple thread!”);

}
}

22



• the code for a program running a SimpleThread would look like that
class ThreadExample {

static public void main() {
SimpleThread st = new SimpleThread();
System.out.println(”I’m the main thread!”);
st.start();

}
}

23



22 A Second Method

• Sometimes we want to make a class a separate thread, that already
extends another class.
• In Java we can always only extend one class.

class SimpleRunnable extends Other implements Runnable {
public void run() {

System.out.println(”I’m a simple thread!”);
}

}

24



class ThreadExample2 {
static public void main() {

SimpleRunnable sr = new SimpleRunnable();
Thread t = new Thread(sr);
System.out.println(”I’m the main thread!”);
t.start();

}
}

25


	Part IX: Concurrency
	Concurrency
	Distribution
	Parallelity
	Problems of Concurrency
	Processes
	Process States
	Process State Transitions
	Process Representation
	Scheduling
	Scheduler
	Context Switch
	Threads
	Thread Advantages
	Thread Advantages (2)
	Threaded Applications
	Threaded Applications (2)
	Process Advantages
	Process Applications
	Java Threads
	Thread Creation
	A Second Method

