
1 Readers-Writers again

• readerCount tells us, how many readers are in the database.
• dbWriting tells, whether we have writers in the database.

private int readerCount;
private boolean dbWriting;

public Database() {
readerCount = 0;
dbWriting = false;

}

1

public synchronized void startRead() {
while (dbWriting == true) {

try {
wait();

catch (InterruptedException e) { }
}
readerCount ++;

}

public synchronized void endRead() {
readerCount —-;
notifyAll();

}

2

public synchronized void startWrite() {
while (readerCount != 0 || dbWriting == true) {

try {
wait();

catch (InterruptedException e) { }
}
dbWriting = true;

}

public synchronized void endWrite() {
dbWriting = false;
notifyAll();

}

3

2 notifyAll

• Before notify() took a thread from the wait set to the entry set.
• Now notifyAll() takes all the threads from the wait set to the entry set.

Why do we need that?

• Before we had always exactly one thread in the wait set of an object.
• Here we may have many threads in one wait set.
• Also we have different conditions to wait for.

Q: What would happen if we replace one of them by notify

If notify works then notifyAll usually works as well, but it may be less
efficient.

4

3 Granularity of Synchronization

• Often we have a choice how detailed we synchronize.
P(S); P(S);
critical critical
V(S); non–critical
non–critical critical
P(S); V(S);
critical
V(S);

• or
while(...) { P(S);

P(S); while(...) {
critical critical
V(S); non–critical
non–critical }

} V(S);

Q: what are the advantages/disadvantages?

5

4 A Design Choice

• We say that the one with smaller critical sections synchronizes with
finer granularity.
• Finer granularity allows to switch more often between threads.
• The coarser solution spends less time on synchronization.
• The coarser solution might deadlock, when the left one does not.
• Often we have the design choice between

• Allowing more things to happen concurrently.
• Spending less time on synchronization.

6

5 Example: Array, synchronized as a whole

class synchArray {
privat int[] a;
synchArray(int i) {

a = new int[i];
}

synchronized void set(int[] b) {
System.arrayCopy(a, 0, b, 0, a.length);

}

synchronized int[] get() {
int[] b = new int[a.length];
System.arrayCopy(b, 0, a, 0, a.length);
return b;

}
}

7

6 Array, synchronized as a whole (2)

class synchArray {
privat int[] a;
privat Database db;
synchArray(int i) {

a = new int[i];
}

void set(int[] b) {
db.startWrite();
System.arrayCopy(a, 0, b, 0, a.length);
db.endWrite();

}

8

int[] get() {
db.startRead();
int[] b = new int[a.length];
System.arrayCopy(b, 0, a, 0, a.length);
db.endRead();
return b;

}
}
• The second solution does a finer synchronization.
• There is more synchronization work to do.

• We call more synchronized methods.
• Calling a synchronized method is expensive.

• More can go on concurrently.

• On a multiprocessor system, array-readers may work
simultaneously.

9

7 Block synchronization

• Java not only allows to synchronize complete methods, but also blocks.
• The following is equivalent to declaring someMethod synchronized.

public void someMethod() {
synchronized(this) {

// body
}

}
• synchronized(o) { ... } tries to acquire the lock of o. After acquiring

it, it executes the block and releases the lock.
• Inside such a block we may use o.wait() and o.notify().
• This allows us to make fine-grained synchronization easier.

10

8 Block synchronization (2)

• As opposed to monitors, we do not have condition variables in Java.
• wait and notify work on object not on variables.
• So we can use an Object as a condition variable:

Object o = new Object();
...
synchronized (o) {

o.wait();
}
...
synchronized (o) {

o.notify();
}

• Often we can use Objects that we have anyway.

11

9 Other things to be aware of

• Each object has a lock (a door with a key).
• We say a thread owns the lock if it has the key.
• A “door” is always associated with an object.
• A “key” can be either available or owned by a thread.
• A thread that owns the lock (has the key) for an object can enter

other synchronized methods or blocks for that object.
• A thread can nest synchronized method invocations for different

objects. So it can own locks for more than one object.
• If a method is not declared synchronized it can be called, even if

another thread is executing a synchronized method.
• If the wait set is empty, a call to notify() has no effect.

12

10 Stopping Threads

• When we write code for a thread we extend Thread and override its
run method.
• We want to write a PrinterThread, that removes integers from a

bounded buffer and prints them.
• We want to be able to stop that thread.
• We introduce a variable stop.
• When we want to stop the thread we set a variable stop to true.
• The thread looks into this variable and stops if it is true.

13

class PrinterThread extends Thread {
BoundedBuffer b;
boolean stop;

public PrinterThread(BoundedBuffer b) {
this.b = b;
this.stop = false;

}

public void run() {
System.out.println(”start printer”);
while (!stop) {

int i = b.remove();
if (!stop)

System.out.println(i);
}
System.out.println(”end printer”);

}
}

14

11 The Main Thread

• In the main thread we create a bounded buffer and a printer thread.
• We start the printer thread with t.start().
• Then we stop it with t.stop = true.

public static void main(String[] args)
throws IOException, InterruptedException {

System.out.println(”start main”);
BoundedBuffer b = new BoundedBuffer();
PrinterThread t = new PrinterThread(b);
t.start();
b.add(3);
System.in.read();
t.stop = true;
System.in.read();
System.out.println(”end main”);

}

15

12 Second Attempt

• The thread will not stop.
• It is waiting in the wait of the remove().

synchronized void add(int o) throws InterruptedException {
while (count == BUFFER SIZE) {

wait();
}
count = count + 1;
buffer[in] = o;
in = (in + 1) % BUFFER SIZE;
notify();

}

16

synchronized int remove() throws InterruptedException {
while (count == 0) {

wait();
}
count = count – 1;
int o = buffer[out];
out = (out + 1) % BUFFER SIZE;
notify();
return o;

}

17

Now we have to check for the expression in the PrinterThread.

public void run() {
System.out.println(”start printer”);
while (!stop) {

int i = 0;
try {

i = b.remove();
} catch (InterruptedException e) { }
if (!stop)

System.out.println(i);
}
System.out.println(”end printer”);

}

18

And we have to call t.interrupt in the MainThread.

class MainThread {
public static void main(String[] args)

throws IOException, InterruptedException {
System.out.println(”start main”);
BoundedBuffer b = new BoundedBuffer();
PrinterThread t = new PrinterThread(b);
t.start();
b.add(3);
System.in.read();
t.stop = true;
t.interrupt();
System.in.read();
System.out.println(”end main”);

}

19

13 Deprecated Java Features

• stop() to stop a Java thread immediately.
• suspend() and resume(), to stop a Java thread temporarily and restart

it later.
public static void main(String[] args) throws IOException {

System.out.println(”start main”);
BoundedBuffer b = new BoundedBuffer();
PrinterThread t = new PrinterThread(b);
t.start();
b.add(3);
System.in.read();
t.stop();
System.in.read();
System.out.println(”end main”);

}

DO NOT USE THESE FEATURES!!

Q: Why not?

20

14 Summary Concurrency

Two ways to implement concurrency

• Processes

• Do not share code and other resources.
• Operating systems.
• Distribution.

• Threads

• Share code and other resources.
• Single Application, that needs concurrency (Browser)
• Server.

21

15 Problems

• First Problem: Race Condition.

• Shared variables, that are accessed concurrently.
• Critical sections and mutual exclusion.

• Critical section are parts of the code, that need to run exclusively
in time.

• These are typically sections, where we address shared variables.
• Second problem: Deadlocks, Starvation.

• Threads have to wait for each other.
• If two or more threads are waiting for each other we have a

deadlock.
• If we do not have a deadlock, but one thread does not get to run

anymore, we call it starvation.
• The goal is to write concurrent programs, that avoid race conditions,

deadlocks and starvation.

22

16 Example Problems

• bounded buffer with producer and consumers
• readers and writers
• dining philosophers

23

17 Solution: Semaphore

• Binary semaphores for critical sections
P(S)

critical section
V(S)

• Counting semaphores: We have n resources, so we allow up to n
threads to be in certain code sections.

24

18 Solution: Java-Synchronization/Monitors

• We have synchronized methods
• No two threads can execute synchronized methods of one object at the

same time.
• We can call a method wait, if we have to wait for a certain condition

to come true.
• We can call notify and notifyAll, to tell other threads that a condition

has come true/might have come true.

25

	Readers-Writers again
	{sf notifyAll}
	Granularity of Synchronization
	A Design Choice
	Example: Array, synchronized as a whole
	Array, synchronized as a whole (2)
	Block synchronization
	Block synchronization (2)
	Other things to be aware of
	Stopping Threads
	The Main Thread
	Second Attempt
	Deprecated Java Features
	Summary Concurrency
	Problems
	Example Problems
	Solution: Semaphore
	Solution: Java-Synchronization/Monitors

