
1 A Recursive Function

This is a recursive function, which computes the factorial:

int x;
x = 5;
int factorial(int n) {

if (n == 0) {
return 1;

} else {
int m;
m = factorial(n – 1);
return m + n;

}
}
System.println(x + factorial(3));

1

2 How do we store variables?

• For each global variable we need one storage place.
• The easiest way is to store it in GlobalSym.
• For each local variable or argument we need one storage place per call.
• In a compiler for a traditional language, such variables are placed on

the stack.
• For each function call we need an environment, where we store the

values of arguments and functions.

2

3 Environments

• For each function call, we have an instance of the class Environment.
• We have an array args to store the arguments and an array locals to

store the local variables.

class Environment {
JexValue[] args;
JexValue[] locals;

public Environment (JexValue[]args, int localCount) { ... }

public JexValue get(int i) { ... }

public void set(int i, JexValue val) { ... }
}
• Environments are the dynamic equivalent of scopes.

3

4 Static and Dynamic Things

• Environments are the dynamic version of scopes
• JexValue are the dynamic version of JexSymbol

• For static things the structuring of blocks is the important structuring
mechanism.

• For dynamic things, the call-structure is the important structuring
mechanism.

• Scopes are opened and closed at the beginning and end of blocks.
• Environments are opened and closed at the beginning and end of a

call.

4

5 How did we interpret Expressions?

public class Evaluator implements Tree.Visitor {
int val;

public static int eval(Tree tree) {
Evaluator ev = new Evaluator();
tree.apply(ev);
return ev.val;

}

public void caseNumLit(Tree.NumLit tree) {
val = tree.num;

}

5

public void caseOperation(Tree.Operation tree) {
switch (tree.op) {

case Tokens.PLUS:
val = eval(tree.left) + eval(tree.right);
break;

case Tokens.MINUS:
val = eval(tree.left) – eval(tree.right);
break;

case Tokens.TIMES:
val = eval(tree.left) ∗ eval(tree.right);
break;

case Tokens.DIV:
val = eval(tree.left) / eval(tree.right);
break;

default: throw new InternalError();
}

}
}

6

6 How do we interpret Jex

• We write a visitor class Interpreter

• When we interpret a part of the program, we usually want to compute
a value. We give the visitor an attribute val, which is returned by the
visitor.

• When we have to interpret the sum E + F of two expressions E we call
interpret() on both subexpressions, add the two resulting values and
store them in val.

• However, before we do the addition, we have to check, that the results
of the two subexpressions are both integers. We can do that by calling
isInteger() on the JexValues.

7

7 How to interpret Jex (2)

• Sometimes, at the left hand side of the assignment, we want to store
something at an expression.
• This happens only for a few kinds of expressions.
• We give a field storeVal to the visitor. If this variable is set (!= null),

then instead of computing a value, we are storing the value given in
storeVal.

• For example for a variable:

• If (storeVal == null) we return the current value of the variable.
• In this case, we also have to check, whether the variable was

already initialized.
• If (storeVal != null) we set the variable to storeVal.
• Here we have to check, whether the value has the correct type to

store it in the variable.

8

8 How to interpret Jex(3)

• The next problem is the return.
• If we interpret a block, we need to interpret the statements one by one.
• but if one of the statements is a return (or contains one) then we

shouldn’t interpret the rest.
• We give a field boolean isReturn to the interpretation visitor, which is

set in case of a return.
• In a block we now interpret the statements one by one until we are

finished or isReturn was set by the last statement.

9

9 The Interpreter Visitor

public class Interpreter implements Tree.Visitor {
Environment env;
JexValue storeVal;
JexValue val;
boolean isReturn;

JexValue interpret(Tree tree, Environment env, JexValue storeVal){
Interpreter ip = new Interpreter();
ip.env = env;
ip.storeVal = storeVal;
ip.isReturn = false;
ip.val = null;
tree.apply(ip);
this.isReturn = ip.isReturn;
return ip.val;

}
}

10

10 Example: While

public void caseWhile(Tree.While tree) {
JexValue b;
while (!isReturn) {

b = interpret(tree.expr);
if (!b.isBoolean())

throw new JexException(tree.pos,
”condition in while not boolean”);

if (!b.getBoolean())
break;

val = interpret(tree.body);
}

}

11

11 The Interpreter Specification

Here we give the semantics quite informally. Also it is often only given,
what you have do in the correct cases.

Program = DEFLIST { Definition | Statement }
interpret every subpart

;
Definition = Formal

do nothing
| FUNDEF Type ident { Formal } Statement

do nothing
| IMPORT { ident } boolean

do nothing
;

Formal = VARDEF Type ident
do nothing

;

12

Statement = ASSIGN Expr Expr
interpret the right expression obtaining val
interpret the left expression with storeVal set to val

| IF Expr Statement Statement
interpret the condition obtaining val
if val is true interpret statement 1 else
interpret statement 2

| WHILE Expr Statement
interpret the condition, as long as it is true
interpret the statement and if isReturn is not set
reinterpret the condition

13

| BLOCK { Statement | Formal }
interpret one subpart after the other until you are
finished or isReturn is set

| EVAL Expr
interpret the expression obtaining val

| RETURN Expr
interpret expression obtaining val, set isReturn

;

Expr = NUMLIT int
set val to a JexValue for the integer

| STRINGLIT String
set val to a JexValue for the string

| BOOLEANLIT boolean
set val to a JexValue for the boolean

14

| IDENT ident
LOAD: load val from the environment (through symbol)
STORE: store storeVal in the environment (through symbol)

| FUNCALL ident { Expr }
interpret all the arguments
build the new calling environment
call interpret on the function–statement
with this new environment obtaining val

| METHODCALL Expr ident { Expr }
interpret the receiver and all the arguments
call the callMethod method on the receiver

| FIELDACCESS Expr ident
LOAD: interpret the receiver and

call the getField method on the receiver
STORE: interpret the receiver and

call the setField method on the receiver

15

| OPERATION Expr Expr op
interpret the two subexpressions, then execute
the appropriate operation

| NEW Type { Expr }
interpret type and the argument expressions
call the getNew method on the type

;

Type = IDENT ident
same as in Expression

| INTEGERTP
return the int class as a JexValue

| BOOLEANTP
return the boolean class as a JexValue

;

16

12 Example: Ident

public void caseIdent(Tree.Ident tree) {
if (storeVal != null) {

tree.sym.store(env, storeVal);
} else {

val = tree.sym.load(env);
}

}
• STORE: Is it really a variable?
• STORE: Does the value fit the type of the variable?
• LOAD: Was the variable initialized?

17

13 Exceptions

• In an interpreter we can have two kind of failures.

• Failure of the interpreter. (e.g. We try to cast to a GlobalSym,
where we have indeed a LocalSym). This is considered a bug in
the interpreter/compiler.

• Failure of the user program. (e.g the user tries to add a boolean
value to an integer).

• Failures of the user program need to be treated specially.
• We introduce a special exception, JexException, which signals a user

error and contains a string describing the exception.
• JexException are caught in the main interpreter loop.
• JexValue throws JexException, if something goes wrong in the

reflection; otherwise it throws Error.
• So before calling val.getInteger(), you should make sure that this is

allowed by calling val.isInteger().

18

	A Recursive Function
	How do we store variables?
	Environments
	Static and Dynamic Things
	How did we interpret Expressions?
	How do we interpret Jex
	How to interpret Jex (2)
	How to interpret Jex(3)
	The Interpreter Visitor
	Example: While
	The Interpreter Specification
	Example: Ident
	Exceptions

