
1 A Recursive Function

This is a recursive function, which computes the factorial:

int x;
x = 5;
int factorial(int n) {

if (n == 0) {
return 1;

} else {
int m;
m = factorial(n – 1);
return m + n;

}
}
System.println(x + factorial(3));
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2 How do we store variables?

• For each global variable we need one storage place.
• The easiest way is to store it in GlobalSym.
• For each local variable or argument we need one storage place per call.
• In a compiler for a traditional language, such variables are placed on

the stack.
• For each function call we need an environment, where we store the

values of arguments and functions.
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3 Environments

• For each function call, we have an instance of the class Environment.
• We have an array args to store the arguments and an array locals to

store the local variables.

class Environment {
JexValue[ ] args;
JexValue[ ] locals;

public Environment (JexValue[ ]args, int localCount) { ... }

public JexValue get(int i) { ... }

public void set(int i, JexValue val) { ... }
}
• Environments are the dynamic equivalent of scopes.
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4 Static and Dynamic Things

• Environments are the dynamic version of scopes
• JexValue are the dynamic version of JexSymbol

• For static things the structuring of blocks is the important structuring
mechanism.

• For dynamic things, the call-structure is the important structuring
mechanism.

• Scopes are opened and closed at the beginning and end of blocks.
• Environments are opened and closed at the beginning and end of a

call.
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5 How did we interpret Expressions?

public class Evaluator implements Tree.Visitor {
int val;

public static int eval(Tree tree) {
Evaluator ev = new Evaluator();
tree.apply(ev);
return ev.val;

}

public void caseNumLit(Tree.NumLit tree) {
val = tree.num;

}
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public void caseOperation(Tree.Operation tree) {
switch (tree.op) {

case Tokens.PLUS:
val = eval(tree.left) + eval(tree.right);
break;

case Tokens.MINUS:
val = eval(tree.left) – eval(tree.right);
break;

case Tokens.TIMES:
val = eval(tree.left) ∗ eval(tree.right);
break;

case Tokens.DIV:
val = eval(tree.left) / eval(tree.right);
break;

default: throw new InternalError();
}

}
}
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6 How do we interpret Jex

• We write a visitor class Interpreter

• When we interpret a part of the program, we usually want to compute
a value. We give the visitor an attribute val, which is returned by the
visitor.

• When we have to interpret the sum E + F of two expressions E we call
interpret() on both subexpressions, add the two resulting values and
store them in val.

• However, before we do the addition, we have to check, that the results
of the two subexpressions are both integers. We can do that by calling
isInteger() on the JexValues.
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7 How to interpret Jex (2)

• Sometimes, at the left hand side of the assignment, we want to store
something at an expression.
• This happens only for a few kinds of expressions.
• We give a field storeVal to the visitor. If this variable is set (!= null),

then instead of computing a value, we are storing the value given in
storeVal.

• For example for a variable:

• If (storeVal == null) we return the current value of the variable.
• In this case, we also have to check, whether the variable was

already initialized.
• If (storeVal != null) we set the variable to storeVal.
• Here we have to check, whether the value has the correct type to

store it in the variable.
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8 How to interpret Jex(3)

• The next problem is the return.
• If we interpret a block, we need to interpret the statements one by one.
• but if one of the statements is a return (or contains one) then we

shouldn’t interpret the rest.
• We give a field boolean isReturn to the interpretation visitor, which is

set in case of a return.
• In a block we now interpret the statements one by one until we are

finished or isReturn was set by the last statement.
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9 The Interpreter Visitor

public class Interpreter implements Tree.Visitor {
Environment env;
JexValue storeVal;
JexValue val;
boolean isReturn;

JexValue interpret(Tree tree, Environment env, JexValue storeVal){
Interpreter ip = new Interpreter();
ip.env = env;
ip.storeVal = storeVal;
ip.isReturn = false;
ip.val = null;
tree.apply(ip);
this.isReturn = ip.isReturn;
return ip.val;

}
}
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10 Example: While

public void caseWhile(Tree.While tree) {
JexValue b;
while (!isReturn) {

b = interpret(tree.expr);
if (!b.isBoolean())

throw new JexException(tree.pos,
”condition in while not boolean”);

if (!b.getBoolean())
break;

val = interpret(tree.body);
}

}
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11 The Interpreter Specification

Here we give the semantics quite informally. Also it is often only given,
what you have do in the correct cases.

Program = DEFLIST { Definition | Statement }
interpret every subpart

;
Definition = Formal

do nothing
| FUNDEF Type ident { Formal } Statement

do nothing
| IMPORT { ident } boolean

do nothing
;

Formal = VARDEF Type ident
do nothing

;
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Statement = ASSIGN Expr Expr
interpret the right expression obtaining val
interpret the left expression with storeVal set to val

| IF Expr Statement Statement
interpret the condition obtaining val
if val is true interpret statement 1 else
interpret statement 2

| WHILE Expr Statement
interpret the condition, as long as it is true
interpret the statement and if isReturn is not set
reinterpret the condition
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| BLOCK { Statement | Formal }
interpret one subpart after the other until you are
finished or isReturn is set

| EVAL Expr
interpret the expression obtaining val

| RETURN Expr
interpret expression obtaining val, set isReturn

;

Expr = NUMLIT int
set val to a JexValue for the integer

| STRINGLIT String
set val to a JexValue for the string

| BOOLEANLIT boolean
set val to a JexValue for the boolean
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| IDENT ident
LOAD: load val from the environment (through symbol)
STORE: store storeVal in the environment (through symbol)

| FUNCALL ident { Expr }
interpret all the arguments
build the new calling environment
call interpret on the function–statement
with this new environment obtaining val

| METHODCALL Expr ident { Expr }
interpret the receiver and all the arguments
call the callMethod method on the receiver

| FIELDACCESS Expr ident
LOAD: interpret the receiver and

call the getField method on the receiver
STORE: interpret the receiver and

call the setField method on the receiver

15



| OPERATION Expr Expr op
interpret the two subexpressions, then execute
the appropriate operation

| NEW Type { Expr }
interpret type and the argument expressions
call the getNew method on the type

;

Type = IDENT ident
same as in Expression

| INTEGERTP
return the int class as a JexValue

| BOOLEANTP
return the boolean class as a JexValue

;
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12 Example: Ident

public void caseIdent(Tree.Ident tree) {
if (storeVal != null) {

tree.sym.store(env, storeVal);
} else {

val = tree.sym.load(env);
}

}
• STORE: Is it really a variable?
• STORE: Does the value fit the type of the variable?
• LOAD: Was the variable initialized?
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13 Exceptions

• In an interpreter we can have two kind of failures.

• Failure of the interpreter. (e.g. We try to cast to a GlobalSym,
where we have indeed a LocalSym). This is considered a bug in
the interpreter/compiler.

• Failure of the user program. (e.g the user tries to add a boolean
value to an integer).

• Failures of the user program need to be treated specially.
• We introduce a special exception, JexException, which signals a user

error and contains a string describing the exception.
• JexException are caught in the main interpreter loop.
• JexValue throws JexException, if something goes wrong in the

reflection; otherwise it throws Error.
• So before calling val.getInteger(), you should make sure that this is

allowed by calling val.isInteger().
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