1 Part VII: Run-time

e Run-time representations
e Run-time systems
e Run-time representaion for Jex

e Interpreting Jex

2 What do we need to think about

e Run-time is, when the program actually executes.

e For a native compiler, this is when we run the native code.

e For an interpreter, this is when we interpret it.

e In Java, this is when the JVM runs the user program.

e How is the program represented at run-time? (e.g. Java Byte Code)

e How is data represented at run-time? (e.g. format for integers)

e What happens at run-time? (e.g. JVM, how do we interpret Java
Bytecode)

This can be very complicated (e.g. in a JIT compiler). The characteristics
of the running program (speed, memory consumption) will depend heavily

on these decisions (Also the complexity of the compiler).

3 Run-time Representations

e Where are variables stored?

Do we need a stack?
How do we organize it?
Do we need a heap?

How do we organize it?

e How are they stored in memory?

e How do we represent objects in an object oriented language?
e Scanner Generator: How do we represent the finite automaton?
e Parser Generator: How do we represent the stack automaton?

e How do we call other functions?
e How do we represent exceptions?
e How do we represent threads?

e How do we represent code?

e Bytecode or native code?
e Mixture of the two (JIT)?
e Use Abstract Syntax Tree (Interpreter)?

e How is the program stored on the disc?

e Java: Classfile format (.class)
e C, C++: Object file format (.0)

4 Run-time System

e Typically a compiler comes with a run-time system.

e The run-time system consists some services.

e These are sometimes directly called by the user program, often they
are called by compiler-generated code.

e Memory allocation/deallocation
e Garbage collection

e Threads

e Synchronization

e Lixceptions

e Access to OS routines.

When we do interpretation the run-time system is built into the
interpreter.

When we compile to machine code, the run-time system typically
comes as a library that is linked to the object code.

In JavaCup the generated class uses other classes from
jaco.framework.parser. They are part of the run-time system of
JavaCup.

JLex just produces a Java class. It only needs the usual Java run-time
support.

In a Java compiler we compile to Java Bytecode. The run-time system

is the Java Virtual Machine.

5 A Run-time System for Jex

e We have to represent values at run-time.

e In Jex we have different kind of values:
classes, objects and basic values (int and boolean).

e For each of them we have a class in the interpreter, which are all
subclasses of JexValue.

e We have methods on JexValue for testing what kind of value we have
and for accessing the real values in JexValue (e.g. the integer).

e There is an analogy between JexValue and JexSymbol: JexSymbol is for
the meaning of the different identifiers, JexValue is for the different
things, identifiers can refer to at run-time.

e JexSymbol is a static concept (it is fixed during interpretation).

e JexValue is a dynamic concept (it changes during interpretation).

6 JexObjects

They represent Java objects at run-time.

They appear as results of new calls, or other calls.

They appear as string constants " hello”.

They can be stored and loaded from variables.

We need to remember the corresponding Java object.

We use a field obj.

We need methods for accessing the fields and calling the methods of

the object.

class JexObject { ... }
Object obj;
JexValue callMethod(String s, JexValue[| args) { ... }
JexValue getField(String s) { ... }
void setField(String s, JexValue val) { ... }
Object getObject() { ... }

7

JexBasic

They represent values of basic types, boolean or int.

They appear as results of calls or also the evaluation of operators.
They appear as constants 3, false.

They can be stored and loaded from variables.

We need to remember the actual value, and its class.

We need methods for extracting the actual integer or boolean.

class JexBasic {
Object val;
Class cls;
int getinteger() { ... }
boolean getBoolean() { ... }

8 JexClass

e They represent Java classes at run-time.

e They appear if we make a reference to a class name like in String s; or
System.out.

e The only thing we need to remember about them is the Java class.

e Therefore we have only one field cls.

e We need methods for accessing the static fields and calling static

methods and for creating new Objects of the class.

class JexClass {
Class cls;
JexValue callMethod(String s, JexValue[| args) { ... }
JexValue getField(String s) { ... }
void setField(String s, JexValue val) { ... }
JexValue getNew(JexValue[| args) { ... }

10

9 JexValue

e We define one superclass JexValue for all of these values.

e Then we are able to pass them around in the interpreter uniformly.

e This class has test-functions, which tell us what it is (e.g. isInteger,
isClass)

e It also has all of the functions mentioned above. (e.g. getlnteger,
getField)

o If we apply them to a JexValue, which doesn’t support this method

(e.g. getinteger to a JexClass), it will raise an exception).

class JexValue {
boolean isInteger() { ... }
int getinteger() { ... }

11

10 JexValue (2)

We could define an abstract method int getinteger().
For JexBasic we would return the integer value (if it is an integer).
For all other cases, we would implement it as an error.

As an alternative we can implement it for JexValue as an error
message and redefine it for JexBasic.
e We save redefining it for every other JexValue.

class JexValue {
boolean isInteger() { return false; }
int getinteger() { throw new Error("internal error”); }

class JexBasic {
boolean isInteger() { ... }
int getinteger() { ... }

12

	Part VII: Run-time
	What do we need to think about
	Run-time Representations
	Run-time System
	A Run-time System for Jex
	JexObjects
	JexBasic
	JexClass
	JexValue
	JexValue (2)

