
1 Part VII: Run-time

• Run-time representations
• Run-time systems
• Run-time representaion for Jex
• Interpreting Jex

1

2 What do we need to think about

• Run-time is, when the program actually executes.
• For a native compiler, this is when we run the native code.
• For an interpreter, this is when we interpret it.
• In Java, this is when the JVM runs the user program.
• How is the program represented at run-time? (e.g. Java Byte Code)
• How is data represented at run-time? (e.g. format for integers)
• What happens at run-time? (e.g. JVM, how do we interpret Java

Bytecode)

This can be very complicated (e.g. in a JIT compiler). The characteristics
of the running program (speed, memory consumption) will depend heavily
on these decisions (Also the complexity of the compiler).

2

3 Run-time Representations

• Where are variables stored?

• Do we need a stack?
• How do we organize it?
• Do we need a heap?
• How do we organize it?

• How are they stored in memory?

• How do we represent objects in an object oriented language?
• Scanner Generator: How do we represent the finite automaton?
• Parser Generator: How do we represent the stack automaton?

• How do we call other functions?
• How do we represent exceptions?
• How do we represent threads?

3

• How do we represent code?

• Bytecode or native code?
• Mixture of the two (JIT)?
• Use Abstract Syntax Tree (Interpreter)?

• How is the program stored on the disc?

• Java: Classfile format (.class)
• C, C++: Object file format (.o)

4

4 Run-time System

• Typically a compiler comes with a run-time system.
• The run-time system consists some services.
• These are sometimes directly called by the user program, often they

are called by compiler-generated code.

• Memory allocation/deallocation
• Garbage collection
• Threads
• Synchronization
• Exceptions
• Access to OS routines.

5

• When we do interpretation the run-time system is built into the
interpreter.
• When we compile to machine code, the run-time system typically

comes as a library that is linked to the object code.
• In JavaCup the generated class uses other classes from

jaco.framework.parser. They are part of the run-time system of
JavaCup.

• JLex just produces a Java class. It only needs the usual Java run-time
support.

• In a Java compiler we compile to Java Bytecode. The run-time system
is the Java Virtual Machine.

6

5 A Run-time System for Jex

• We have to represent values at run-time.
• In Jex we have different kind of values:

classes, objects and basic values (int and boolean).
• For each of them we have a class in the interpreter, which are all

subclasses of JexValue.
• We have methods on JexValue for testing what kind of value we have

and for accessing the real values in JexValue (e.g. the integer).
• There is an analogy between JexValue and JexSymbol: JexSymbol is for

the meaning of the different identifiers, JexValue is for the different
things, identifiers can refer to at run-time.

• JexSymbol is a static concept (it is fixed during interpretation).
• JexValue is a dynamic concept (it changes during interpretation).

7

6 JexObjects

• They represent Java objects at run-time.
• They appear as results of new calls, or other calls.
• They appear as string constants ”hello”.
• They can be stored and loaded from variables.
• We need to remember the corresponding Java object.
• We use a field obj.
• We need methods for accessing the fields and calling the methods of

the object.

class JexObject { ... }
Object obj;
JexValue callMethod(String s, JexValue[] args) { ... }
JexValue getField(String s) { ... }
void setField(String s, JexValue val) { ... }
Object getObject() { ... }

}

8

7 JexBasic

• They represent values of basic types, boolean or int.
• They appear as results of calls or also the evaluation of operators.
• They appear as constants 3, false.
• They can be stored and loaded from variables.
• We need to remember the actual value, and its class.
• We need methods for extracting the actual integer or boolean.

class JexBasic {
Object val;
Class cls;
int getInteger() { ... }
boolean getBoolean() { ... }

}

9

8 JexClass

• They represent Java classes at run-time.
• They appear if we make a reference to a class name like in String s; or

System.out.
• The only thing we need to remember about them is the Java class.
• Therefore we have only one field cls.
• We need methods for accessing the static fields and calling static

methods and for creating new Objects of the class.

class JexClass {
Class cls;
JexValue callMethod(String s, JexValue[] args) { ... }
JexValue getField(String s) { ... }
void setField(String s, JexValue val) { ... }
JexValue getNew(JexValue[] args) { ... }

}

10

9 JexValue

• We define one superclass JexValue for all of these values.
• Then we are able to pass them around in the interpreter uniformly.
• This class has test-functions, which tell us what it is (e.g. isInteger,

isClass)
• It also has all of the functions mentioned above. (e.g. getInteger,

getField)
• If we apply them to a JexValue, which doesn’t support this method

(e.g. getInteger to a JexClass), it will raise an exception).

class JexValue {
boolean isInteger() { ... }
int getInteger() { ... }

}

11

10 JexValue (2)

• We could define an abstract method int getInteger().
• For JexBasic we would return the integer value (if it is an integer).
• For all other cases, we would implement it as an error.
• As an alternative we can implement it for JexValue as an error

message and redefine it for JexBasic.
• We save redefining it for every other JexValue.

class JexValue {
boolean isInteger() { return false; }
int getInteger() { throw new Error(”internal error”); }

class JexBasic {
boolean isInteger() { ... }
int getInteger() { ... }

}
}

12

	Part VII: Run-time
	What do we need to think about
	Run-time Representations
	Run-time System
	A Run-time System for Jex
	JexObjects
	JexBasic
	JexClass
	JexValue
	JexValue (2)

