
1 The Main Program

• There are two ways to use Jex.
• Call Jex with file arguments. Then it will interpret the files one by one.

> java jex.Main file1.jex file2.jex
>

• Call Jex without file arguments. then it will go into interactive mode
and you can type commands one by one.

> java jex.Main
jex> 3 + 5;
8
jex>

• In the implementation main distinguishes these cases and calls
handleInput(Reader input) to do the real work.

1

2 The Main Program

public static void handleInput(Reader input) throws Exception {
try {

Parser parser = new Parser(new Scanner(input));
Tree tree = (Tree)parser.parse().value;
Analyzer.analyzeTree(tree, symbols, true, imports);
if (Report.errCount == 0) {

JexValue value = Interpreter.interpretTree(tree);
if (value != null && !value.isVoid())

System.out.println(value);
}

} catch (JexException exception) {
System.out.println(””);
Report.error(exception.pos, exception.getMessage());

}
Report.reset();

}

2

3 Applications of Jex (as Program)

• If you are developing a Java program. Typically you would import the
classes that you are developing and call their functions.

>java jex.Main
jex> import myNewMathPackage;
jex> MyNewMathClass.factorial(3);
6
jex>

• You can use Jex for writing test scripts. The file testNewMath.jex:
import myNewMathPackage;
if (MyNewMathClass.factorial(3) != 6)

System.out.println(”factorial–test failed”);

To test the package you would call:

>java jex.Main testNewMath.jex

• Especially for interactive programs this might be a good solution.
They are sometimes difficult to test.

3

4 Applications of Jex (Scripts/Macros)

• You can call Jex from other Java programs. Include
jex.Main.handleInput(new StringReader(”System.out.println (5)”));

into your code. This fragment calls Jex and lets it interpret
”System.out.println (5)”.
• If this doesn’t look useful, maybe the next one does:

String userscript;
String[] macros;
... // set macros, userScript;
jex.Main.handleInput(new StringReader(userScript));
jex.Main.handleInput(new StringReader(macros[i]));

• An application could allow the user to attach Jex-scripts to buttons.
In the case of a button-press event it would execute the Jex-script.

• Scripts that you write for an application can later be ported to Java
and built into the application.

• Ports to Java should be very easy (You may need some casts).

4

5 Applications of Jex (Debugger)

• You can call the interpreter-loop from within your other Java program.

jex.Main.main(new String[]{});

This allows you to interact with your program at certain points in the
program.
• It might act as a tool for debugging. You can call it from your

Java-program and then evaluate some expressions. However, you
cannot access local variables.

5

6 Applications of Jex (Command Loop)

• Insert this code into your code
jex.Main.handleFile(”commands.predef”);
jex.Main.handleStdIn();

Your file commands.predef:
import myNewMathPackage;
int fac(int n) {

return MyNewMathClass.factorial(n)
}

• This version first defines a command fac(int) as a function in the file
commands.predef. From the command-line the user can then call these
functions.
• But the user can call everything. You might not want to have that.

6

7 Reflection

Q: Could you write A Cex/Cex++?

• Reflection is the ability to access the program at run-time.
• A language can support different degrees of reflection. It may allow:

• Accessing variables by their name (as a String).
• Calling functions or methods by their name.
• Constructing new functions, methods, and variables.
• Constructing new classes.

• Jex is quite flexible

• One can create new variables and functions.
• One can access classes and methods.
• One cannot create new classes and methods.
• However, you can write a new class, compile it and import it from

Jex.

7

8 The Java Reflection Library

We could not write Jex if Java would not have support for reflection.

• Jex is built on top of the Java reflection library.
• In Java their exist classes Class, Method, Field, Constructor, to access

these things at run-time.
• You can call methods on them:

public JexValue getField(String s) {
Field f = obj.getClass().getField(s);
Object res = f.get(obj);
Class resType = f.getType();
if (resType.isPrimitive())

return new JexBasic(res, resType);
else

return new JexObject(res);
}

8

9 Reflection and Compilers

• If reflection is not part of the language it cannot be built in (C, C++).
• Interpreted languages often have reflection, because it is easy to

implement for them.
• Compiled languages often do not have reflection.
• If a language allows reflection, this restricts the compiler.

• The compiler cannot remove unused functions from the code.
• At some points, variables cannot be kept in registers.
• Constant expression may not be constant any more (they may be

changed through reflection).
• On the other side, reflection makes a language very flexible.
• A language with reflection is easier to interface with other languages.

9

	The Main Program
	The Main Program
	Applications of Jex (as Program)
	Applications of Jex (Scripts/Macros)
	Applications of Jex (Debugger)
	Applications of Jex (Command Loop)
	Reflection
	The Java Reflection Library
	Reflection and Compilers

