
1 Part VII: Type Analysis

• Declarations of identifiers is not the only thing to be checked in a
compiler.
• Sometimes we have to check for additional properties of the abstract

tree.
• Like in many other programming languages the values and variables of

Jex have types.
• We have to check that types make sense:

• The operands of == need to be of same type.
• The number of arguments in a function call must match the

number of formal parameters at the definition.
• In a variable definition we should really have a type. (It could be

another identifier referring to a variable).
• A function call should really call a function, not a variable.

1

2 Static or Dynamic Type Checking

• Many of these checks can be done at runtime or at analysis time.
• Jex does only a few checks at analysis time.
• Many other checks are only done at runtime.

• + has to have two integer arguments and yields an integer result.
• The condition in an if or while needs to evaluate to a boolean

value.
• We will have to check all these things in the interpreter.

• Checking at analysis time is called static type-checking.

+ We get error messages already at compile-time.
+ Code runs faster.

• Checking at runtime is called dynamic type-checking.

+ Sometimes more flexible.
+ More intuitive to code?

2

3 Example: Expressions with booleans

Expr = OPERATION Expr Expr op
| NUMLIT int
| BOOLLIT boolean

Operators are &&, +, ==.

• (3 == 4) && false is considered correct.
• 3 == (4 + true) is considered a type error.

3

4 Specification of Type Correctness

• First, we have to define, when a program is type correct.
• We cannot do this by a context-free grammar, we have to use other

methods.
• Intuitively, every expression has to have a type.
• We formalize this by adding attributes (like type) to the the abstract

syntax tree.

Expr(t) = OPERATION Expr(t’) Expr(t”) op
(op = PLUS && t’ = INT && t” = INT && t = INT)
|| (op = AND && t’ = BOOL && t” = BOOL && t = BOOL)
|| (op = EQ && t’ = t” && t = BOOL)

| NUMLIT(value) int
(t = int)

| BOOLLIT(value) boolean
(t = boolean)

4

5 Legal Programs

• A program is legal, if

• it is a sentence in the context-free grammar,
• there is an attribution for its abstract syntax tree.

• An attribution is an assignment of attributes to the tree, such that all
constraints are fulfilled.

• A language is fully described by the context-free syntax and its
context dependent syntax.

• Nothing is said about the semantics of the language so far.

5

6 A typical Language Defintion

Each expression has a type.

Operation expression. An operation expression is of the from
expression op expression, where op is one of +, &&, and ==.

An operation expression is type-correct, if both sub-expressions are
type-correct and

• op is + and both sub-expressions have type INT.
• op is && and both sub-expressions have type BOOL.
• op is == and both sub-expressions have equal type.

The type of an operation expression is

• INT, if op is +,
• BOOL, if op is && or ==.

6

7 Implementation in the Visitor

• Here we implement the attribute type as return type in the visitor.
• resultType is a field in the visitor, which is returned by analyze.

void caseOperation(Tree.Operation tree) {
Type t1 = analyze(tree.left);
Type t2 = analyze(tree.right);
switch(tree.op) {

case PLUS:
if (t1 != INT || t2 != INT) error();
type = INT;
break;

...
}

}
• The type is propagated from the leaves to the root in the abstract

syntax tree. It is therefore called a synthesized attribute.
• Synthesized attributes are often implemented as visitor return types.

7

8 Analysis for Jex

• In Jex we do dynamic type-checking.
• Most checks are done at run-time.
• Only a few checks are done at compile-time:

• In a variable definition, type should really be a type (not an
identifier referring to something else).

• In new, the type should really be a type.
• In a function definition, the result type should really be a type

(The formal parameters are already covered by the variable
defintion rule).

• A function call should really call a function, not a variable or a
class

• A variable reference should never refer to a function.
• Essentially, the different identifiers for functions, variables and classes

shouldn’t be confused.

8

9 Context Dependent Syntax of Jex

• We add an attribute sym to FUNDEF, VARDEF, IDENT, and
FUNCALL.
• We add an attribute cls to Formal, Type, and IDENT.
• If we found a class in Formal, Type, or IDENT, cls is set to this class.
• Otherwise cls is set to null.

9

Program = DEFLIST { Definition | Statement }
”We intepret every part in the global scope.
We use the global importScope and set toplevel to true”

;
Definition = Formal(cls)

| FUNDEF(sym) Type(cls) ident { Formal(clsi) } Statement
sym instanceof FunSym
sym.resClass = cls != null
sym.argClasses[i] = clsi
scope.enter(sym)
”create a new nested scope,
analyze formals and statement in that scope,
with toplevel set to false”

| IMPORT { ident } boolean
importScope.enter(new Import({ident}, boolean));

;

10

Formal(cls) = VARDEF(sym) Type(cls’) ident
cls = cls’ = sym.cls != null
(toplevel && sym instanceof GlobalSym
|| !toplevel && sym instanceof LocalSym)
scope.enter(sym)

;
Statement = ASSIGN Expr Expr

| IF Expr Statement Statement
| WHILE Expr Statement
| BLOCK { Statement | Formal }

”create a new nested scope, analyze formals
and statement in that scope”

| EVAL Expr
| RETURN Expr
;

11

Expr = NUMLIT int
| STRINGLIT String
| BOOLEANLIT boolean
| IDENT(cls, sym) ident

((sym = scope.lookup(ident)
sym.isVariable()
cls = null)

|| (scope.lookup(ident) = null
cls = importscope.lookup(ident)
sym.isClass()
cls != null)

)

12

| FUNCALL(sym) ident { Expr }
sym.isFunction()
sym = scope.lookup(ident)

| METHODCALL Expr ident { Expr }
| FIELDACCESS Expr ident
| OPERATION Expr Expr op
| NEW Type(cls) { Expr }

cls != null
;

Type(cls) = IDENT(cls’, sym) ident
”as for Expr”
cls = cls’

| INTEGERTP
cls = int.class

| BOOLEANTP
cls = boolean.class

;

We are informal here in how we treat scope, importscope, and toplevel.

13

10 We could be more formal

• More formally we could add an attribute scope, importscope, and
toplevel to every non-terminal.

• But it is less readable then, because we have many uninteresting rules.
• Imagine the following rule:

Expr(sc, is, tl) = OPERATION Expr(sc’, is’, tl’) Expr(sc”, is”, tl”) op
sc == sc’
sc == sc”
is == is’
is == is”
tl == tl’
tl == tl”

• But in the implementation we treat them as if we had these attributes.
• We were also sloppy about the order of lookup and enter calls.

14

11 How do we implement that?

• The function analyze returns now a Java class cls.
• The function analyze in the visitor makes sure, that cls is initialized to

null in each visitor.
• If we analyze a type we set cls to the class.
• This can happen in Ident, IntegerTp, or BooleanTp.
• In a variable definition, type should really be a type. So we check

whether analyze(tree.tp) != null.
• In new, the type should really be a type. So we check whether

analyze(tree.tp) != null.
• In a function definition, the result type should really be a type.
• A function call should really call a function. Here we check with

sym.isFunction().
• A variable reference should really refer to a variable. Here we check

with sym.isVariable().

15

12 Slots

• There is one more thing, that we would like to do during analysis.
• Each argument or local variable gets a slot assigned, that is some kind

of address for the variable at run-time.
• Arguments get negative slot numbers, local variables non-negative slot

numbers.
• We implement this by a slot counter nextSlot, which is set to

–(number of arguments) at the beginning of a function.
• Then we increment it first for every argument and then for every local

variable, that is whenever we analyze a Formal.

16

13 The Visitor for Name and Type Analysis

public class Analyzer implements Tree.Visitor {
Scope scope;
ImportScope imports;
boolean topLevel;

// next free Slot for local variable
int nextSlot;

// class of analyzed Type or Formal
Class cls;

// recursive analysis methods
Class analyze(Tree tree, Scope scope, boolean topLevel) { ... }
Class analyze(Tree tree, Scope scope) { ... }
Class analyze(Tree tree) { ... }

17

public void caseDefList(Tree.DefList tree) {
for (int i = 0; i < tree.defs.length; i ++)

analyze(tree.defs[i]);
}

public void caseFunDef(Tree.FunDef tree) {
// parameters get negative slot numbers
nextSlot = – tree.formals.length;

// the scope starting with the parameters
Scope paramScope = new Scope(scope);

// analyse formal arguments
Class[] argClasses = new Class[tree.formals.length];
for (int i = 0; i < tree.formals.length; i ++)

argClasses[i] = analyze(tree.formals[i], paramScope);

18

// analyze result type
Class resClass = analyze(tree.tp);
if (resClass == null)

Report.error(tree.pos, ”Invalid result type for ” + tree.name);

// symbol for function
JexSymbol.FunSym fsym = new JexSymbol.FunSym(

tree.pos, tree.name, tree, resClass, argClasses);
scope.enter(fsym);

// analyze body
analyze(tree.stat, paramScope);

// nextSlot was incremented for every local variable
fsym.localCount = nextSlot;
tree.sym = fsym;

}

19

public void caseFunCall(Tree.FunCall tree) {
// analyze arguments
for (int i = 0; i < tree.args.length; i ++)

analyze(tree.args[i]);

// get function symbol and check
tree.sym = (JexSymbol) scope.lookup(tree.name);
if (tree.sym == null) {

Report.error(tree.pos, ”function ” + tree.name + ” undefined”);
} else if (!tree.sym.isFunction()) {

Report.error(tree.pos, ”calling a non–function ” + tree.name);
}

}

20

public void caseIdent(Tree.Ident tree) {
// get symbol and check
tree.sym = (JexSymbol) scope.lookup(tree.name);
if (tree.sym != null) {

if (tree.sym.isFunction())
Report.error(tree.pos, ”function ” + tree.name +

” used as variable”);
} else {

// get class and check
cls = imports.lookup(tree.name);
if (cls != null)

tree.sym = new JexSymbol.ClassSym(tree.pos,
tree.name, cls);

else
Report.error(tree.pos, tree.name + ” undefined”);

}
}

21

14 From Context-Dependent Syntax to

Implementation

• Instead of checking constraints we have to compute the attributes.
• Attributes are usually computed from other attributes.
• Important: Assign attributes only once.

There are different kinds of attributes:

• Some attributes flow up the tree (these are synthesized) e.g. cls.

• Synthesized attributes are often implemented as return types of
the visitor.

• Some flow down the tree (they are inherited) e.g. scope.

• Inherited attributes are often input parameters to the visitor.

22

• Some attributes are required to be present later (e.g.sym), they are
called persistent.

• Persistent attributes are stored as additional fields in the abstract
syntax tree.

• Others are just required for analysis (e.g. cls) they are called transient.

• Transient attributes are parameters/result for the visitor.
• Sometimes attributes can be global variables. This may be simpler if

arguments change rarely (e.g. importScope).

23

15 Attribute Grammars

• Context-dependent syntax is sometimes specified unsing an attribute
grammar.
• This is very similar to the above but completely formal.
• Nodes of the abstract syntax tree are given attributes.
• Attributes are evaluated by assignments, similar to our constraints.
• Attributes are conceptually instance variables in tree nodes.

• Sometimes attributes are stored in a tree.
• Sometimes they are stored as global variables.
• Sometimes they are passed around and not stored.

• There are even tools for them, but in practice they are too complex to
use.

24

	Part VII: Type Analysis
	Static or Dynamic Type Checking
	Example: Expressions with booleans
	Specification of Type Correctness
	Legal Programs
	A typical Language Defintion
	Implementation in the Visitor
	Analysis for Jex
	Context Dependent Syntax of Jex
	We could be more formal
	How do we implement that?
	Slots
	The Visitor for Name and Type Analysis
	From Context-Dependent Syntax to Implementation
	Attribute Grammars

