
1 Part VII: Type Analysis

• Declarations of identifiers is not the only thing to be checked in a
compiler.
• Sometimes we have to check for additional properties of the abstract

tree.
• Like in many other programming languages the values and variables of

Jex have types.
• We have to check that types make sense:

• The operands of == need to be of same type.
• The number of arguments in a function call must match the

number of formal parameters at the definition.
• In a variable definition we should really have a type. (It could be

another identifier referring to a variable).
• A function call should really call a function, not a variable.

1



2 Static or Dynamic Type Checking

• Many of these checks can be done at runtime or at analysis time.
• Jex does only a few checks at analysis time.
• Many other checks are only done at runtime.

• + has to have two integer arguments and yields an integer result.
• The condition in an if or while needs to evaluate to a boolean

value.
• We will have to check all these things in the interpreter.

• Checking at analysis time is called static type-checking.

+ We get error messages already at compile-time.
+ Code runs faster.

• Checking at runtime is called dynamic type-checking.

+ Sometimes more flexible.
+ More intuitive to code?
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3 Example: Expressions with booleans

Expr = OPERATION Expr Expr op
| NUMLIT int
| BOOLLIT boolean

Operators are &&, +, ==.

• (3 == 4) && false is considered correct.
• 3 == (4 + true) is considered a type error.
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4 Specification of Type Correctness

• First, we have to define, when a program is type correct.
• We cannot do this by a context-free grammar, we have to use other

methods.
• Intuitively, every expression has to have a type.
• We formalize this by adding attributes (like type) to the the abstract

syntax tree.

Expr(t) = OPERATION Expr(t’) Expr(t”) op
(op = PLUS && t’ = INT && t” = INT && t = INT)
|| (op = AND && t’ = BOOL && t” = BOOL && t = BOOL)
|| (op = EQ && t’ = t” && t = BOOL)

| NUMLIT(value) int
(t = int)

| BOOLLIT(value) boolean
(t = boolean)
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5 Legal Programs

• A program is legal, if

• it is a sentence in the context-free grammar,
• there is an attribution for its abstract syntax tree.

• An attribution is an assignment of attributes to the tree, such that all
constraints are fulfilled.

• A language is fully described by the context-free syntax and its
context dependent syntax.

• Nothing is said about the semantics of the language so far.
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6 A typical Language Defintion

Each expression has a type.

Operation expression. An operation expression is of the from
expression op expression, where op is one of +, &&, and ==.

An operation expression is type-correct, if both sub-expressions are
type-correct and

• op is + and both sub-expressions have type INT.
• op is && and both sub-expressions have type BOOL.
• op is == and both sub-expressions have equal type.

The type of an operation expression is

• INT, if op is +,
• BOOL, if op is && or ==.
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7 Implementation in the Visitor

• Here we implement the attribute type as return type in the visitor.
• resultType is a field in the visitor, which is returned by analyze.

void caseOperation(Tree.Operation tree) {
Type t1 = analyze(tree.left);
Type t2 = analyze(tree.right);
switch(tree.op) {

case PLUS:
if (t1 != INT || t2 != INT) error();
type = INT;
break;

...
}

}
• The type is propagated from the leaves to the root in the abstract

syntax tree. It is therefore called a synthesized attribute.
• Synthesized attributes are often implemented as visitor return types.
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8 Analysis for Jex

• In Jex we do dynamic type-checking.
• Most checks are done at run-time.
• Only a few checks are done at compile-time:

• In a variable definition, type should really be a type (not an
identifier referring to something else).

• In new, the type should really be a type.
• In a function definition, the result type should really be a type

(The formal parameters are already covered by the variable
defintion rule).

• A function call should really call a function, not a variable or a
class

• A variable reference should never refer to a function.
• Essentially, the different identifiers for functions, variables and classes

shouldn’t be confused.
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9 Context Dependent Syntax of Jex

• We add an attribute sym to FUNDEF, VARDEF, IDENT, and
FUNCALL.
• We add an attribute cls to Formal, Type, and IDENT.
• If we found a class in Formal, Type, or IDENT, cls is set to this class.
• Otherwise cls is set to null.

9



Program = DEFLIST { Definition | Statement }
”We intepret every part in the global scope.
We use the global importScope and set toplevel to true”

;
Definition = Formal(cls)

| FUNDEF(sym) Type(cls) ident { Formal(clsi) } Statement
sym instanceof FunSym
sym.resClass = cls != null
sym.argClasses[i] = clsi
scope.enter(sym)
”create a new nested scope,
analyze formals and statement in that scope,
with toplevel set to false”

| IMPORT { ident } boolean
importScope.enter(new Import({ident}, boolean));

;
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Formal(cls) = VARDEF(sym) Type(cls’) ident
cls = cls’ = sym.cls != null
(toplevel && sym instanceof GlobalSym
|| !toplevel && sym instanceof LocalSym)
scope.enter(sym)

;
Statement = ASSIGN Expr Expr

| IF Expr Statement Statement
| WHILE Expr Statement
| BLOCK { Statement | Formal }

”create a new nested scope, analyze formals
and statement in that scope”

| EVAL Expr
| RETURN Expr
;
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Expr = NUMLIT int
| STRINGLIT String
| BOOLEANLIT boolean
| IDENT(cls, sym) ident

( (sym = scope.lookup(ident)
sym.isVariable()
cls = null)

|| ( scope.lookup(ident) = null
cls = importscope.lookup(ident)
sym.isClass()
cls != null)

)
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| FUNCALL(sym) ident { Expr }
sym.isFunction()
sym = scope.lookup(ident)

| METHODCALL Expr ident { Expr }
| FIELDACCESS Expr ident
| OPERATION Expr Expr op
| NEW Type(cls) { Expr }

cls != null
;

Type(cls) = IDENT(cls’, sym) ident
”as for Expr”
cls = cls’

| INTEGERTP
cls = int.class

| BOOLEANTP
cls = boolean.class

;

We are informal here in how we treat scope, importscope, and toplevel.
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10 We could be more formal

• More formally we could add an attribute scope, importscope, and
toplevel to every non-terminal.

• But it is less readable then, because we have many uninteresting rules.
• Imagine the following rule:

Expr(sc, is, tl) = OPERATION Expr(sc’, is’, tl’) Expr(sc”, is”, tl”) op
sc == sc’
sc == sc”
is == is’
is == is”
tl == tl’
tl == tl”

• But in the implementation we treat them as if we had these attributes.
• We were also sloppy about the order of lookup and enter calls.
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11 How do we implement that?

• The function analyze returns now a Java class cls.
• The function analyze in the visitor makes sure, that cls is initialized to

null in each visitor.
• If we analyze a type we set cls to the class.
• This can happen in Ident, IntegerTp, or BooleanTp.
• In a variable definition, type should really be a type. So we check

whether analyze(tree.tp) != null.
• In new, the type should really be a type. So we check whether

analyze(tree.tp) != null.
• In a function definition, the result type should really be a type.
• A function call should really call a function. Here we check with

sym.isFunction().
• A variable reference should really refer to a variable. Here we check

with sym.isVariable().
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12 Slots

• There is one more thing, that we would like to do during analysis.
• Each argument or local variable gets a slot assigned, that is some kind

of address for the variable at run-time.
• Arguments get negative slot numbers, local variables non-negative slot

numbers.
• We implement this by a slot counter nextSlot, which is set to

–(number of arguments) at the beginning of a function.
• Then we increment it first for every argument and then for every local

variable, that is whenever we analyze a Formal.
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13 The Visitor for Name and Type Analysis

public class Analyzer implements Tree.Visitor {
Scope scope;
ImportScope imports;
boolean topLevel;

// next free Slot for local variable
int nextSlot;

// class of analyzed Type or Formal
Class cls;

// recursive analysis methods
Class analyze(Tree tree, Scope scope, boolean topLevel) { ... }
Class analyze(Tree tree, Scope scope) { ... }
Class analyze(Tree tree) { ... }
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public void caseDefList(Tree.DefList tree) {
for (int i = 0; i < tree.defs.length; i ++)

analyze(tree.defs[i]);
}

public void caseFunDef(Tree.FunDef tree) {
// parameters get negative slot numbers
nextSlot = – tree.formals.length;

// the scope starting with the parameters
Scope paramScope = new Scope(scope);

// analyse formal arguments
Class[ ] argClasses = new Class[tree.formals.length];
for (int i = 0; i < tree.formals.length; i ++)

argClasses[i] = analyze(tree.formals[i], paramScope);
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// analyze result type
Class resClass = analyze(tree.tp);
if (resClass == null)

Report.error(tree.pos, ”Invalid result type for ” + tree.name);

// symbol for function
JexSymbol.FunSym fsym = new JexSymbol.FunSym(

tree.pos, tree.name, tree, resClass, argClasses);
scope.enter(fsym);

// analyze body
analyze(tree.stat, paramScope);

// nextSlot was incremented for every local variable
fsym.localCount = nextSlot;
tree.sym = fsym;

}

19



public void caseFunCall(Tree.FunCall tree) {
// analyze arguments
for (int i = 0; i < tree.args.length; i ++)

analyze(tree.args[i]);

// get function symbol and check
tree.sym = (JexSymbol) scope.lookup(tree.name);
if (tree.sym == null) {

Report.error(tree.pos, ”function ” + tree.name + ” undefined”);
} else if (!tree.sym.isFunction()) {

Report.error(tree.pos, ”calling a non–function ” + tree.name);
}

}
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public void caseIdent(Tree.Ident tree) {
// get symbol and check
tree.sym = (JexSymbol) scope.lookup(tree.name);
if (tree.sym != null) {

if (tree.sym.isFunction())
Report.error(tree.pos, ”function ” + tree.name +

” used as variable”);
} else {

// get class and check
cls = imports.lookup(tree.name);
if (cls != null)

tree.sym = new JexSymbol.ClassSym(tree.pos,
tree.name, cls);

else
Report.error(tree.pos, tree.name + ” undefined”);

}
}
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14 From Context-Dependent Syntax to

Implementation

• Instead of checking constraints we have to compute the attributes.
• Attributes are usually computed from other attributes.
• Important: Assign attributes only once.

There are different kinds of attributes:

• Some attributes flow up the tree (these are synthesized) e.g. cls.

• Synthesized attributes are often implemented as return types of
the visitor.

• Some flow down the tree (they are inherited) e.g. scope.

• Inherited attributes are often input parameters to the visitor.

22



• Some attributes are required to be present later (e.g.sym), they are
called persistent.

• Persistent attributes are stored as additional fields in the abstract
syntax tree.

• Others are just required for analysis (e.g. cls) they are called transient.

• Transient attributes are parameters/result for the visitor.
• Sometimes attributes can be global variables. This may be simpler if

arguments change rarely (e.g. importScope).
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15 Attribute Grammars

• Context-dependent syntax is sometimes specified unsing an attribute
grammar.
• This is very similar to the above but completely formal.
• Nodes of the abstract syntax tree are given attributes.
• Attributes are evaluated by assignments, similar to our constraints.
• Attributes are conceptually instance variables in tree nodes.

• Sometimes attributes are stored in a tree.
• Sometimes they are stored as global variables.
• Sometimes they are passed around and not stored.

• There are even tools for them, but in practice they are too complex to
use.
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