
1 Exercises

• For the following program: Draw the symbol table at the marked
point.
• Write the function lookup in class Scope

import java.lang.∗;
int x;

int f(int x) {
int res;
res = 1;
while (x > 1) {

res = res ∗ x;
/∗∗∗ here ∗∗∗/
x = x – 1;

}
return res;

}

1

class Scope {
Symbol first;
Scope outer;

/∗∗ lookup a name in the current or an enclosing scope;
∗ returns null, if no matching symbol is found
∗/

public Symbol lookup(String name) { ... }
public void enter(Symbol sym) { ... }

}
class Symbol {

int pos;
String name;
Symbol next;
...

}

2

2 Symbols in Jex

• In Jex unqualified names (names that do not follow a dot), can refer
to different kind of things:

• local variables
• global variables
• functions
• java classes

• It is the purpose of the name analysis to find for every unqualified
name the point of definition and set the sym - field in the tree
correspondingly
• At the definition point we construct a JexSymbol object and put it

into the symbol table.
• At a usage point we look it up in the symbol table.

3

3 Symbols in Jex(2)

We implement this by a class JexSymbol and 4 subclasses.

• LocalSym GlobalSym FunSym ClassSym

We use the class JexSymbol to implement functionality that is common to
some symbols, but is specific for Jex and not in class Symbol.

• Example: boolean isVariable(), which asks whether the symbol is a
LocalSym or GlobalSym.

The information we need to store in the symbols are

• The types of the defined names
• Run-time information (e.g.The number of local variables in a function)

4

4 Types and class Class

• Types in Jex are the classes or primitive types of Java.

• int, boolean, String, ...
• So we can use the class Class from Java to store the type of a defined

entity.
• Objects of class Class are run-time representations of Java classes.
• We can get the class of a java object o by o.getClass().
• We can get a class also by calling e.g.

Class.classForName(”java.lang.String”).

5

5 JexSymbol

• LocalSym and GlobalSym have a field Class cls, which denotes the type
of the variable.
• ClassSym has a field Class cls, which denotes the class itself.
• FunSym has a field Class resClass and a field Class[] argClasses, which

denote return type and argument types respectively.
• The remaining fields are run-time information.

• The class JexSymbol also has some functions.
public boolean isVariable() { ... }
public boolean isFunction() { ... }
public boolean isClass() { ... }

• Later for interpretation we will add more functions.
• These functions where the reason of adding a class JexSymbol.

6

class JexSymbol extends Symbol {
static public class FunSym extends JexSymbol {

Class resClass;
Class[] argClasses;
Tree.FunDef tree;
int localCount;

}
static public class LocalSym extends JexSymbol {

Class cls;
int adr;

}
static public class GlobalSym extends JexSymbol {

Class cls;
JexValue val;

}
static public class ClassSym extends JexSymbol {

Class cls;
}

}

7

6 Imports

• If a name does not refer to a defined identifier, it might refer to a Java
class.
• Java has a static method Class Class.classForName(String) which yields

an object representing the class.
• But, when looking for a class by name we also have to consider the

imports.
• Imports are represented by a class Import

class Import {
Import next;
public Import(String[] names, boolean isStar) { ... }
public Class classForName(String s) { ... }

}
• The next field makes a linear list, like for Symbol.

8

7 ImportScope

Similar to scope we keep all import directives in an import scope.

• For this we have a class ImportScope:
class ImportScope {

Import first;
public ImportScope() { ... }
public void enter(Import imp) { ... }
public Class lookup(String s) { ... }

}
• enter puts a new import directive into the import scope.
• lookup tries to find a class with name s, using all the import directives

in the import scope.

9

8 Optimisation

• The current scheme uses a linear search for identifiers in symbol tables.
• In a production compiler this is far too slow.
• Better schemes:

• additionally link entries as a binary tree and use that for searching
• Use a hash table for each block
• Use a global hash table (fastest)

10

9 A first Visitor for Name Analysis

• It has to construct the symbols.
• It has to attach the computed symbols to the tree.
• It has to enter the symbols into the scope.
• It has to lookup the identifiers in the scope.
• It has to attach the looked upd symbols to the tree.

11

public class Analyzer implements Tree.Visitor {
Scope scope; // current scope

ImportScope imports; // imports (global)

boolean toplevel; // are we on toplevel?

// the main name analysis method
public static void analyzeTree(Tree tree, Scope scope,

ImportScope imports, boolean topLevel) {
tree.apply(new Analyzer(scope, imports, toplevel));

}

// recursive analysis method
protected void analyze(Tree tree, Scope scope, boolean topLevel) {

...
}

12

public void caseFunDef(Tree.FunDef tree) {
// the scope starting with the parameters
Scope paramScope = new Scope(scope);

// analyse formal arguments
for (int i = 0; i < tree.formals.length; i ++)

analyze(tree.formals[i], paramScope, false);

// analyze result type
analyze(tree.tp, scope, toplevel);

// symbol for function
tree.sym = new JexSymbol.FunSym(tree.pos, tree.name, ...);
scope.enter(tree.sym);

// analyze body
analyze(tree.stat, paramScope, false);

}

13

public void caseFunCall(Tree.FunCall tree) {
// analyze arguments
for (int i = 0; i < tree.args.length; i ++)

analyze(tree.args[i], scope, toplevel);

// get function symbol
tree.sym = (JexSymbol) scope.lookup(tree.name);
if (tree.sym == null)

Report.error(tree.pos, ”function ” + tree.name + ” undefined”);
}

public void caseDefList(Tree.DefList tree) {
for (int i = 0; i < tree.defs.length; i ++)

analyze(tree.defs[i], scope, true);
}

14

10 Making it a bit more convenient

• We often call analyze with similar arguments.
• We define additional recursive analyze methods with fewer arguments.

// recursive analysis method
protected void analyze(Tree tree) {

analyze(tree, scope, toplevel);
}
// recursive analysis method
protected void analyze(Tree tree, Scope scope) {

analyze(tree, scope, false);
}

15

	Exercises
	Symbols in Jex
	Symbols in Jex(2)
	Types and class Class
	JexSymbol
	Imports
	ImportScope
	Optimisation
	A first Visitor for Name Analysis
	Making it a bit more convenient

