1 Part VI: Name Analysis

e Programming languages are not context-free
e Context rules for Jex

e Representation of Contexts in a Compiler

e Symbol tables and symbols

e Imports

e Optimisation




2 Programming Languages are not

context-free

e Counter example: Every identifier needs to be declared

e being declared is a property that depends on context

e In theory, the syntax of a programming language could be specified
completely in a context-dependent grammar.

e But in practice, we define a context-free superset of the language in
EBNF, and then we weed out illegal programs with further rules.

e Those rules typically need access to an identifier’s declaration.




3 Context Rules for Jex

e Jex has standard block structured visibility rules for identifiers
e For the purpose of this discussion, a block is

e anything enclosed in braces {}
e the area consisting of a functions parameter-list to the end of its
body.

e the whole program is a block




4 Scope

e Every defined identifier has its scope, i.e. an area of program text, in
which it can be referred to.

e The scope of an identifier extends from the point of its definition to
the end of the enclosing block.

e It is illegal to refer to an identifier outside its scope.

e It is illegal to declare two identifiers with the same name in the same
block.

e However, it is legal to declare an identifier in a nested block, which is
also declared in an enclosing block.

e In this case the inner declaration hides the outer.




5 Representation of Context in a Compiler

e We represent context by a global data structure which stores for every
visible identifier data about its declaration.

e The data structure is called a symbol table and the Information is
called a symbol table entry (or entry)

e Since Jex has nested blocks, the symbol table should be structured in
the same way.

e The symbol table can be represented as a stack of blocks, with the

current innermost block on top.




6 Symbols

e A symbol is a data structure, which contains all the information about
a defined identifier a compiler needs to know.

e Symbols have a name field, and a pos field, to indicate the point of
definition.

e Because we usually want to store additional information we will build
subclasses of Symbol.

e Additional information are for example the declared types or the
number of local variables for a function.

e Because we define different things (variables, functions), we will have

more than one subclass.




7 Symbols (2)

e We have for every occurence of an identifier a field sym in the abstract
syntax tree, which gets set in the name analysis.

e The purpose of name analysis is to determine for every occurrence
(usage or definition) of an identifier in the source code the
corresponding symbol.

e At the definition point of an identifier, we construct a new symbol for
it set the field sym, and enter it into the symbol table.

e At a usage point of an identifier we look it up in the symbol table and
store it into the field sym.




8 Symbols (3)

e [t is sometimes necessary to step through all symbols of a scope in the
sequence they were defined.
e Therefore they are linked linearly with a next field.

class Symbol {
int pos;
String name;
Symbol next;
public Symbol(int pos, String name) { ... }




9 Scopes

e Symbols are grouped together in Scopes.

e Scopes represent areas of visibility.

e A Scope is a data structure which refers to all identifiers declared in it.

e Scopes are nested; therefore it is convenient to keep a field outer in a
scope, which refers to the enclosing scope.

e This leads to the following class fragment:

class Scope {
/+x a list of all symbols in this scope

*/
Symbol first;
/** the enclosing scope

/

Scope outer;




/*% create new scope

f
public Scope(Scope outer) {
this.outer = outer:;
}

/*x lookup a name in the current or an enclosing scope;
x returns null, if no matching symbol is found

*/
public Symbol lookup(String name) { ... }
/+x enter a symbol into this scope

*/
}

e Scopes refer to the first symbol declared in the scope (first),

public void enter(Symbol sym) { ... }

e Other symbols are accessed via the next field in class Symbol

Exercise: Write implementations for lookup and enter.
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10 Symbols in Jex

In Jex unqualified names (names that do not follow a dot), can refer
to different kind of things:

e local variables
e global variables
e functions

e java classes

It is the purpose of the name analysis to find for every unqualified
name the point of definition and set the sym - field in the tree
correspondingly

At the definition point we construct a JexSymbol object and put it
into the symbol table.

At a usage point we look it up in the symbol table.
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11 Symbols in Jex(2)

We implement this by a class JexSymbol and 4 subclasses
e LocalSym GlobalSym FunSym ClassSym

We use the class JexSymbol to implement functionality that is common to
some symbols, but is Jex specific an not in class Symbol.

e Example: boolean isVariable(), which asks whether the symbol is a
LocalSym or GlobalSym.

The information we need to store in the symbols are

e The types of the defined names

e Run-time information

e the number of local variables
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12 Types

Types in Jex are the classes or primitive types of Java. So we can use the
class Class from Java to store the type of a defined entity.

e LocalSym, GlobalSym and ClassSym have a field Class cls.
e FunSym has a field Class resClass and a field Class| ] argClasses.

class JexSymbol extends Symbol {
static public class FunSym extends JexSymbol {
Tree.FunDef tree;
int localCount;
Class resClass;
Class| | argClasses;
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static public class LocalSym extends JexSymbol {
int adr;
Class cls;

}

static public class GlobalSym extends JexSymbol {
JexValue val;
Class cls:

}

static public class ClassSym extends JexSymbol {
Class cls;

}
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13 How it hangs together

import java.lang.x;
import java.io.x;

String z;
z = "hello”;
int f(string s, int y) {
int x;
x = 0;
while (x < y) {
int vy;
y = X + X;

System.out.println(z);
System.out.printIn(s);
System.out.printin(y);
x =x + 1;
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14 Imports

e If a name does not refer to a defined identifier, it might refer to a Java
class.

e Java has a static method Class Class.classForName(String) which yields
an object representing the class.

e But when looking for a class by name we also have to consider the
imports.

e Imports are represented by a class Import

class Import {
String prefix;
String suffix; // null for Star
Import next;
public Import(String prefix, String suffix) { ... }
public Class classForName(String s) { ... }

}

e The next field again makes a linear list.

16




15 ImportScope

e We have a class ImportScope:

class ImportScope {
Import first;
public ImportScope() {
this.first = new Import(
h

public void enter(Import imp) { ... }
public Class lookup(String s) { ... }

, null); // import x;

}

e enter puts a new import directive into the import scope.
e lookup tries to find a class with name s, using all the import directives

in the import scope.
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16 Optimisation

e The current scheme uses a linear search for identifiers
e In a production compiler this is far to slow
e Better schemes:

e additionally link entries as a binary tree and use that for searching

e Use a hash table for each block
e Use a global hash table (fastest)
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17 Hash tables

e A hash table is a fast implementation for tables.
e A table here is set of pairs (key, value).
e We have two operations on tables:
e enter a pair (key, value): put(key, value)
e find the corresponding value for a given key: get(key)
e Idea: Use a function hash(key) which maps each key to an integer,
then store values in an array under the computed index.
e An example of a hash-function on strings would be the sum of all

characters.
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18

Hash tables (2)

But: hash might yield the same integer for different keys!

We use an array of linked lists.

To enter a pair, we compute the integer i and enter the pair into the
corresponding linked list ali].

To lookup a key, we compute the integer i and look up the key in the
corresponding linked list ali].

If the table is big enough, the lists are typically very short (often 0 or
1 element).

Then access is very fast.

Choosing a good hash-function is essential for performance (taking the
first character doesn’t work well).

In Java there exist classes Hashtable and HashMap, which implement
hashtables.
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