
1 Review Scanner

• The scanner reads characters and yields tokens.
• It checks the wellformedness of the tokens.
• The class Scanner has a method nextToken(), which yields the input

tokens one at a time.
• This class is implemented by jex.lex, from which JLex generates

Scanner.java.

1



2 Review Parser

• The parser reads tokens by calling nextToken().
• It checks, whether the input is syntactically correct.
• It builds an internal data structure of class Tree, the abstract syntax

tree.
• The method parse() in class Parser yields this tree.
• This class is implemented by jex.cup, from which JavaCup generates

Parser.java.

2



3 PrettyPrinter, Analyzer, Interpreter

• These are all processes working on the abstract syntax tree.
• The PrettyPrinter prints the abstract syntax tree in readable form.

• This can support debugging of the compiler.
• The Analyzer relates usage of a name to its definition.

• It also checks whether all used names are defined.
• If we do type-checking at compile-time the analyzer does the

type-checking as well.
• The Interpreter executes the program.
• Each of these processes is implemented by a visitor.

3



4 Object-oriented approach

• Disadvantage: One process is spread over many source files.

5 Visitor

• Advantage: A process is in one class. This makes it easy to develop
and maintain processes separately.

• Disadvantage: A bit more complicated, but the larger the application,
the smaller the difference.

4



6 Another Extension Problem: A generic

HTML-Parser

• We saw that visitors made the extension by new processors easy.
• A generic parser should be usable in different applications.
• Different applications may have different tree representations.
• In our parser the tree representation is fixed. There are calls of the

form
new Operation(pos, left, right, op).

• These calls are spread all over the parser.
• A generic parser needs to be able to generate different representations
• General principle: Encapsulate things that vary.
• Idea here: Encapsulate creation in a class.
• This class is called a factory, because it creates things.

5



7 Factories

• A factory is a class which is responsible for creating objects.
• Example: A factory for expression trees:

class TreeFactory {
public Tree mkOperation(int pos, Tree left, Tree right, int op) {

return new Tree.Operation(pos, left, right, op);
}
public Tree mkNumLit(int pos, int i) {

return new Tree.NumLit(pos, i);
}

}
• Now in the parser, instead of writing

new Tree.Operation(pos, left, right, int op);

we write

treeFact.mkOperation(pos, left, right, int op);

6



Now treeFact is an attribute of the parser. To this end we have to change
the parser.

action code
{: TreeFactory treeFact;
:};
parser code
{: TreeFactory treeFact;

public Parser(Scanner scanner, TreeFactory treeFact) { ... }
:};
init with
{: action obj.treeFact = treeFact;
:};

and we inititialize the parser now with

new Parser(scanner, new TreeFactory());

7



8 Extending: A second Tree

• Assume, we want to have another version where only the structure is
important, numbers and operators and positions do not matter.
• We first have to declare a type OtherTree

class OtherTree extends Tree {
class OtherOperation {

OtherTree left, right;
public OtherTree Operation(OtherTree left,

OtherTree right) { ... }
}
class OtherNumLit {

public OtherTree NumLit() { }
}

}

8



9 Extending: A second TreeFactory

• We write a factory for OtherTree

class OtherTreeFactory extends TreeFactory {
public Tree mkOperation(int pos, Tree left, Tree right, int op) {

return new OtherTree.Operation((OtherTree) left,
(OtherTree) right);

}
public Tree mkNumLit(int pos, int i) {

return new OtherTree.NumLit();
}

}
and construct a new factory in the main program

new Parser(scanner, new OtherTreeFactory());

• We could circumvent the casts, if we had generic types (templates in
C++).

9



10 Factories: Other Uses

• We also have to use factories, if we have different versions of our
compiler, with different trees, but we want to use the same parser.
• A software package, running under multiple window systems, can use a

window factory to create windows (menu bars, menus, scrollbars, ...).
• This is probably the most typical use.
• Generally, if we have a related products

• trees
• windows

and different implementations we can use a factory for creating these
products.
• This is easier than switches and new statements.
• It is easy to extend (write another factory) and we do not need to

change existing code.
• It is easier to assure, that we don’t mix implementations.

10


	Review Scanner
	Review Parser
	PrettyPrinter, Analyzer, Interpreter
	Object-oriented approach
	Visitor
	Another Extension Problem: A generic HTML-Parser
	Factories
	Extending: A second Tree
	Extending: A second TreeFactory
	Factories: Other Uses

