1 Part 1V: Parsing

e Bottom-Up Parsing

e Parsing with JavaCUP
e Top-Down Parsing

e Lirror-Recovery




2 Scanners and Parsers

e Most compilers in practice have both a scanner for the lexical syntax
and a parser for the context-free syntax.

e better modularity

e separation of concerns

e Characters =Scanner =Tokens

e Tokens =Parser =Syntax-Tree




3 From EBNF to BNF

For building parsers (especially bottom-up) a BNF grammar is often
better, than EBNF. But it’s easy to convert an EBNF Grammar to BNEF"

e Convert every repetition { E } to a fresh non-terminal X and add
X=¢|XE.

e Convert every option [ E | to a fresh non-terminal X and add
X=¢€¢|E.
(We can convert X =A[E]B.toX=AEB|AB,)

e Convert every group ( E ) to a fresh non-terminal X and add
X = E.

e We can even do away with alternatives by having several productions

with the same non-terminal.
X =E|E" becomes X =E. X =FE".




4 Bottom-Up Parsing

e A bottom-up parser builds a derivation from the terminal symbols,
working toward the start symbol.
e It consists of a stack and an input.

e Four actions:

e shift, which pushes the next token onto the stack
e reduce, removes Y1, ...,Yk, which are the right-hand side of some

production X = Y1 ... Yk. From the top of the stack and replaces

them by X.

e accept, ends the parser with success.
e error, ends the parser with an error message.

e (Question: How does the parser know, which action to invoke.




5 Simple Answer: Operator Precedence

e Suitable for languages of the form
Expression = Operand Operator Operand with operands of varying
precedence and associativity.

e Principle (token is the next input token):

if (token is an operand) shift;

else if (stack does not contain an operator) shift;

else {
top = (topmost operator of stack);
if (precedence(top) < precedence(token)) shift;
else if (precedence(top) > precedence(token)) reduce;
else if (top and token are right associative) shift;
else if (top and token are left associative) reduce;
else error:;




6

The Parser Generator JavaCUP

The original version is from

http:/ /www.cs.princeton.edu/ appel/modern/java/CUP /, but we use a

local modified version.

generates a class Parser.java, which contains the parser.

generates a class Parser.tables, which contains the parsing tables.
generates a class Tokens.java, which is suitable to be used by the
scanner.

if there are situations, where it wouldn’t know, whether to shift or to

reduce, it reports a conflict.



http://www.cs.princeton.edu/~appel/modern/java/CUP/

7 An Expression Parser in JavaCUP

package expression;
import jaco.framework.x;
action code {: :};
parser code {:
Scanner scanner:
public Parser(Scanner scanner)

{
}
public void report_error(String msg, Object o)

{
}

this.scanner = scanner;

/% report error x/




8 An Expression Parser in JavaCUP (2)

public void report_fatal_error(String msg, Object o)

{
/* report error and throw exception x/
}
3
init with {: :};

scan with {: return scanner.nextToken(); :};




9 An Expression Parser in JavaCUP (3)

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN:
terminal NUMLIT;

non terminal Expression, Term, Factor;
start with Expression;

Expression ::= Expression PLUS Term
| Expression MINUS Term
| Term

Term = Term TIMES Factor
| Term DIV Factor
| Factor

Factor = NUMLIT
|  LPAREN Expression RPAREN




10 A shift-reduce Conflict

If we enter the grammar

Expression ::= Expression PLUS Expression

without precedence JavaCUP will tell us:

xxx Shift /Reduce conflict found in state #4
between Expression ::= Expression PLUS Expression (x)
and  Expression ::= Expression (x) PLUS Expression
under symbol PLUS
Resolved in favor of shifting.

Telling JavaCUP that PLUS is left associative helps!
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11 Using Precedence

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN:
terminal NUMLIT;

non terminal Expression, Term, Factor;
precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Expression;

Expression ::= Expression PLUS Expression
Expression MINUS Expression
Expression TIMES Expression
Expression DIV Expression
NUMLIT

LPAREN Expression RPAREN
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12 Precedence

e A terminal has the given precedence (or lowest if unsepcified)
e a production has the precedence of its last terminal (lowest if
unspecified, give if explicitely annotated).
e In a shift/reduce conflict
e if the production has higher precedence reduce

e if the terminal has higher precedence shift
e if they are equal use associativity
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13 The if-then-else Problem

A standard problem in parsing is the if-then-else:

Statement ::= IF LPAREN Expression RPAREN Statement
| IF LPAREN Expression RPAREN Statement ELSE Statement

| ... other statements ...

reports a shift-reduce conflict. It resolves in favor of shifting, which is what
we want. We can
e Give ELSE higher priority than the production: precedence left ELSE.
e Tell JavaCUP on the command line to expect one conflict: —expect 1.

e Fix the grammar properly!
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14 'The if-then-else Solution

Statement ::= IF LPAREN Expression RPAREN Statement
| NoShortlf

NoShortlf ::= IF LPAREN Expression RPAREN NoShortlf ELSE Statement
| ... other statements ...
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15 A reduce-reduce Conflict

These conflicts are less common and often indicate a problem of the
language rather than the grammar.

Expression ::= MExpression
| DExpression

MExpression:= IDENT TIMES IDENT
| IDENT

DExpression::= IDENT DIV IDENT
| IDENT

+x+ Reduce/Reduce conflict found in state #4
between MExpression ::= IDENT (%)
and  DExpression ::= IDENT ()
under symbols: {EOF}

Resolved in favor of the first production.
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16 first(X), follow(X) and nullable

e first(X) are the terminals X can start with.

e A terminal t is in first(X) if there is a parse tree, such that t is the

leftmost leaf under X.
e ¢ leaves do not count.
e Example:

A="b""c" |B"d".
B="a"|e.
first(A) = { b, a,d }
e follow(X) are terminals which can follow X.
e A terminal t is in follow(X) if there is a parse tree such that t is

the leftmost leaf after the leaves under X
e Again, € leaves do not count.
e Example: follow(B) = {d }
e A non-terminal is nullable if it can derive the empty string (it may
have only e-leaves (Example: B is nullable)
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17 Exercise

S=ES.
E=T"+" E|T.
T="x"

Find the first and follow sets for T and E. Are there any nullable

non-terminals?
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18

How to compute first(X) and follow(X)?

. A=B"x" C. ..

first(B) C first(A).
if B is nullable then x € first(A).
Naive method: compute first, follow and nullable for right-hand side
and from that for A.
Does not work for recursion!
E=E"4+" T|T.
Idea: Start with empty sets and add elements until all conditions are
satisfied.
This is called a fixpoint algorithm (It runs until there are no more

changes, until the solution is fix).
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19 Formal Definition: first(X), follow(X), nullable

first(X), follow(X) and nullable are the smallest sets with the following

properties:

For each production X = Y1 .. Yk, 1 <1, 57 <k:
if { Y1, ..., Yk } C nullable
X &€ nullable
if { Y1, ..., Yi-1 } C nullable
first(X) = first(X) U first(Yi)
if { Yi+1, ..., Yk } C nullable
follow(Yi) = follow(Yi) U follow(X)
if { Yi+1, ..., Yj-1 } C nullable
follow(Yi) = follow(Yi) U first(Y])
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20 Algorithm for first(X), follow(X) and nullable

nullable = 0;
for each terminal t { first(t) = t; follow(t) = 0; }
for each nonterminal Y { first(Y) = (); follow(Y) = ; }

repeat {
nullable’ = nullable; first’ = first; follow’ = follow;

for each production X = Y1 .. Yk, 1 <14, j <k {
if { Y1, ..., Yk } C nullable
nullable = nullable U X;
if { Y1, ..., Yi-1 } C nullable
first(X) = first(X) U first(Yi);
if { Yit1, ... Yk } C nullable
follow(Yi) = follow(Yi) U follow(X);
if { Yi+1, ..., Yj=1 } C nullable
follow(Yi) = follow(Yi) U follow(Y]);
}

until (nullable = nullable’, first = first’, follow = follow');
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21 LR(0) Parsing

e Idea: Use a DFA applied to the stack to decide whether to shift or to
reduce.

e The states of the DFA are sets of LR(0) items.

e An LR(0) item is of the form [X = A _ B |, where X is a non-terminal
and A,B are strings of terminals and non-terminals (possibly empty).

e An LR(0) item describes a possible situation during parsing, where

e X=AB. is a production, which is currently possible.

e A is on the stack.

e B is in the input.

e the _ describes the border between stack and input.
e Example: [E=T _"+" E|
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22 LR(0) Parsing (2)

e Principle:
e shift, in a state where [X = A _ b B] if the next token is b.
e reduce, in a state [X = A ]
e The resulting parser is called LR(0), since it parses left-to-right,
describes a rightmost derivation. The 0 means, that the parser uses no
lookahead on the input.
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23 SLR Parsing

e Problem: Some states contain shift and reduce items.

e Example:
S=ES}.
E=T"+"E|T.
T ="x".

e LR(0) state construction gives a state containing the items
[E=T_"4+" E]
E=T]
o If we see "+" as the next input token should we shift or reduce?
e Solution: Reduce only if the symbol is in follow(E).
e The resulting parser is called simple LR or SLR.
e The number of states is the same as in LR(0).
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24 LALR(1) Parsing

e Sometimes, in specific states not all terminals from follow(X) can
really occur.

e Idea: Propagate state-specific follow symbols.

e Reduce only if the symbol is in the state specific follow symbols.

e The resulting parser is called LALR(1) for Look-Ahead-LR.

e The number of states is the same as in LR(0) and SLR.

e This is, what JavaCUP uses (also yacc, bison).

e If an LALR(1) parser generator gives a conflict, then for all practical

purposes it cannot know, what to do in certain situations.
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25 LR(1) Parsing

e LR(1) parsing refines the notion of state. A state is now a set of
LR(1) items, where each item is of the form [X =A _B; c] and cis a
terminal.

X=AB. is a production, which is currently possible.

A is on the stack.
B c is in the input.

the _ describes the border between stack and input.

e The rest of the construction is similar to LR(0), except that we reduce
in a state with item [X = A _; c] only if the next input token is c.

e The result is called LR(1) parsing, because now we use one token
lookahead to make our decision.

e LR(1) parsers are slightly more powerful than LALR(1) parsers.

e But, there are many more LR(1) states than LR(0) states. Often we

have a state explosion
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26 Grammar in JavaCUP

terminal PLUS, NUMLIT;
non terminal Expression, Term;
start with Expression;

Expression ::= Term PLUS Expression
| Term
Term = NUMLIT
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27 States in JavaCUP

The option —dump_states yields the following output

START lalr_state [0]: {

[Expression ::= (x) Term , {EOF }]

[Expression ::= (x) Term PLUS Expression , {EOF }]
Term ::= (%) NUMLIT , {EOF PLUS }]

$START ::= (x) Expression EOF , {EOF }]

}

transition on Expression to state [3]
transition on NUMLIT to state [2]
transition on Term to state [1]
lalr_state [1]: {
[Expression ::= Term (x) , {EOF }]
[Expression ::= Term (%) PLUS Expression , {EOF }]
}

transition on PLUS to state [5]
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lalr_state [2]: {
[Term ::= NUMLIT (%) , {EOF PLUS }]
}
lalr_state [3]: {
[$START ::= Expression (x) EOF , {EOF }]
}
transition on EOF to state [4]
lalr_state [4]: {
[$START ::= Expression EOF (x) , {EOF }]

}
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lalr_state [5]: {

[Expression ::= (x) Term , {EOF }]

[Expression ::= Term PLUS (%) Expression , {EOF }]
[Expression ::= (x) Term PLUS Expression , {EOF }]
Term ::= (x) NUMLIT , {EOF PLUS }]

}

transition on Expression to state [0]
transition on NUMLIT to state [2]
transition on Term to state [1]
lalr_state [6]: {
[Expression ::= Term PLUS Expression (x) , {EOF }]
}
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28 Debugging JavaCUP

Calling debug_parse() in ParserTest instead of parse() (You can use —debug),
using input 5+3 yields

# Initializing parser

# Current Symbol is #38

# Shift under term #8 to state #2

# Current token is #2

# Reduce with prod #3 [NT=2, SZ=1]
# Goto state #1

# Shift under term #2 to state #5

# Current token is #38

# Shift under term #8 to state #2

# Current token is #0
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# Reduce with prod #3 [NT=2, SZ=1]
# Goto state #1
# Reduce with prod #2 [NT=1, SZ=1]
# Goto state #6
# Reduce with prod #1 [NT=1, SZ=3]
# Goto state #3

# Shift under term #0 to state #4

# Current token is #0

# Reduce with prod #0 [NT=0, SZ=2]
# Goto state #-1
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29 If again

Statement ::= |F IDENT Statement
| IF IDENT Statement ELSE Statement
| RETURN NUMLIT SEMI

reports a shift-reduce conflict. Why?

if x if y return 3; else return 7,

32




30 If Solution

Partition statements and allow in then-branch no short ifs.

Statement ::= Shortlf
| NoShortlf

Shortlf := |F IDENT Statement

NoShortlf ::= IF IDENT NoShortlf ELSE Statement
| RETURN NUMLIT
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31 Error Recovery

e After an error, the parser should be able to continue processing.

e Processing is for finding other errors, not for code generation or
interpretation. These get disabled after the first error.

e (Question: How can the parser recover from an error and resume

normal parsing?
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32 Error Recovery in Bottom-Up

e There are different schemes. The following is implemented in
JavaCUP, yacc, bison.

e Introduce a special symbol error.

e The author of a parser can use error in productions.

e For instance:
Statement = Assignment
| IfStatement

| error”;
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33 Error Recovery in Bottom-Up (2)

e If the parser encounters an error, it will pop the stack until it gets into
a state, where error is legal.

e At this point it shifts error onto the stack.

e Then, the input tokens are skipped, until the next input token is one
that can legally follow the new state.

e This scheme is very dependent on a good choice of error productions.

e Assume a production Statement = error ”;

e The parser encounters error inside a statement. It will pop the
stack until it expects a statement.

e At this point it shifts error onto the stack.

e Then, the input tokens are skipped, until ";" is found.
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34

Where to put error

Different people recommend different things.
It is a good idea to have a terminal after error to ensure termination.

Examples:
Statement ::= error SEMI
| LBRACE error RBRACE
Expression ::= LPAREN error RPAREN
The generated parser will tell you the exact position of the error.
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35 Semantic Actions

e A parser usually does more than just recognize syntax.
e [t could:
e Evaluate code (simple interpreter)

e Emit code (single pass compiler)
e Build an internal data structure (multi pass compiler, interpreter)

e Generally, a parser performs semantic actions

e In a machine-generated bottom-up parser, they are added to the
grammar submitted to the parser generator.

e In a recursive descent parser, semantic actions are embedded in the

recognizer routines.
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36 An Interpreter for Expressions

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN:
terminal Integer NUMLIT;

non terminal Program;

non terminal Integer Expression, Term, Factor;
precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;
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37 An Interpreter for Expressions (2)

Program .:= Expression:e
{: System.out.printin(e.intValue()); :}
Expression ::= Expression:e PLUS Term:t
{: RESULT = new Integer(e.intValue() + t.intValue()); :}
| Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() — t.intValue()); :}
| Term:t
{: RESULT =t; :}
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38 An Interpreter for Expressions (3)

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() * f.intValue()); :}
| Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() / f.intValue()); :}
| Factor:f
{: RESULT =f; :}

Factor = NUMLIT:n
{: RESULT = n; :}
| LPAREN Expression:e RPAREN
{: RESULT =e; :}
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39 Top-Down Parsing

e Regular languages are limited in that they cannot express nesting.

e Therefore, finite state machines cannot recognize context-free
grammars.

e Let’s try it anyway: A = ident A numlit | numlit. leads after

simplification to the following parser:

void A() {
if (token == IDENT) {
nextToken();
AQ);
if (token == NUMLIT) nextToken(); else error();
} else if (token == NUMLIT)
nextToken();
else
error();
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40 Deriving a Parser from EBNF

To derive a parser from a context-free grammar written in EBNF style:

e Introduce one function void A() for each non-terminal A

e The task of A() is to recognize sub-sentences derived from A, or issue
an error if no A was found.

e Translate all regular expressions on the right-hand-side of productions

as before, but

e every occurrence of a non-terminal B maps to B()
e Recursion in the grammar translates naturally to recursion in the

parser.
e This technique of writing parsers is called parsing by recursive descent

or predictive parsing.
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41 A Parser for Expressions

Expression = Expression ( "= | "4" ) Term | Term.
Term = Term ( "%" | " /" ) Factor | Factor.
Factor = numlit | " (" Expression ")".

void Expression() {
if (token == NUMLIT || token == LPAREN) {

Expression();
if (token == MINUS || token == PLUS)

next Token();
else error();
Term();
} else {
Term();
h
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42 Eliminating Left Recursion

Expression = Term { ( "=" | "+" ) Term }.
Term = Factor { ( "*" | " /" ) Factor }.
Factor = numlit | " (" Expression ")".

void Expression() {

Term();
while (token == MINUS || token == PLUS) {

next Token();
Term();
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43 Another Problem

Factor = ident | ident "[" Expression "]" | numlit.

void Factor() {
if (token == IDENT) {
77
} else {
if (token == NUMLIT)
nextToken();
else error();
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44 Left Factoring

Factor = ident [ "[" Expression "|" | | numlit.

void Factor() {
if (token == IDENT) {
if (token == LBRACKET) {
nextToken();
Expression();
if (token == RBRACKET)
nextToken();
else error();

}
} else {

if (token == NUMLIT)
next Token();
else error();
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45 LL(1) Grammar

e Definition: A simple BNF grammar is LL(1) if for all nonterminals X:
if X appears on the left-hand side of two productions X=E1. and
X=E2. then

e first(E1) N first(E2) = 0.
e cither (neither E1 nor E2 is nullable)
or (exactly one, say E1 is nullable and first(X) N follow(E2) = 0.
e LL(1) stands for "left-to-right-parse, leftmost derivation, 1 symbol
lookahead”.
e Recursive descent parsers work only for LI(1) grammars.
e Elimination of left recursion and left-factoring work often, but not

always.
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46 Error Recovery for Top-Down

e We choose a set of stop-symbols, e.g. } ;)

e If we encounter an error, we call skip(), give an error message and

return.

e skip() skips the input to the next stop symbol.
e It also skips subblocks { ... } completely.

e We do not print two error messages for the same position.

{
}

a=>5x(34);
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47 Summary Top-Down Parsing

e A context-free grammar can be converted directly into a program
scheme for a recursive descent parser.

e A recursive-descent parser builds a derivation top down, from the
start symbol towards the terminal symbols.

e Weakness: Must decide what to do based on first input token.

e This works only if the language is LL(1).
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48 A Hierarchy of Grammar Classes

LR(k + 1) > LR(k) (Further lookahead helps)

LL(k+1) > LL(k) (Further lookahead helps)
e LR(k) > LL(k) (LR is better than LL)

LR(1) > LALR(1) > SLR > LR(0)
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49 Top-Down / Bottom-Up

Top-Down

+ easy to write by hand.

+ flexible embedding in compiler possible.
- harder to maintain.

- error recovery can be tricky.

- deep recursion can be inefficient.

Bottom-Up

+ larger class of languages and grammar.
- needs tool to generate

- less flexible to embed in compiler

- depends on quality of tool

Mixtures are possible. Some commercial compilers use recursive descent,

with operator precedence for expressions to get rid of deep recursion.
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