1 Part 1V: Parsing

e Bottom-Up Parsing

e Parsing with JavaCUP
e Top-Down Parsing

e Lirror-Recovery

2 Scanners and Parsers

e Most compilers in practice have both a scanner for the lexical syntax
and a parser for the context-free syntax.

e better modularity

e separation of concerns

e Characters =Scanner =Tokens

e Tokens =Parser =Syntax-Tree

3 From EBNF to BNF

For building parsers (especially bottom-up) a BNF grammar is often
better, than EBNF. But it’s easy to convert an EBNF Grammar to BNEF"

e Convert every repetition { E } to a fresh non-terminal X and add
X=¢|XE.

e Convert every option [E | to a fresh non-terminal X and add
X=¢€¢|E.
(We can convert X =A[E]B.toX=AEB|AB,)

e Convert every group (E) to a fresh non-terminal X and add
X = E.

e We can even do away with alternatives by having several productions

with the same non-terminal.
X =E|E" becomes X =E. X =FE".

4 Bottom-Up Parsing

e A bottom-up parser builds a derivation from the terminal symbols,
working toward the start symbol.
e It consists of a stack and an input.

e Four actions:

e shift, which pushes the next token onto the stack
e reduce, removes Y1, ...,Yk, which are the right-hand side of some

production X = Y1 ... Yk. From the top of the stack and replaces

them by X.

e accept, ends the parser with success.
e error, ends the parser with an error message.

e (Question: How does the parser know, which action to invoke.

5 Simple Answer: Operator Precedence

e Suitable for languages of the form
Expression = Operand Operator Operand with operands of varying
precedence and associativity.

e Principle (token is the next input token):

if (token is an operand) shift;

else if (stack does not contain an operator) shift;

else {
top = (topmost operator of stack);
if (precedence(top) < precedence(token)) shift;
else if (precedence(top) > precedence(token)) reduce;
else if (top and token are right associative) shift;
else if (top and token are left associative) reduce;
else error:;

6

The Parser Generator JavaCUP

The original version is from

http:/ /www.cs.princeton.edu/ appel/modern/java/CUP /, but we use a

local modified version.

generates a class Parser.java, which contains the parser.

generates a class Parser.tables, which contains the parsing tables.
generates a class Tokens.java, which is suitable to be used by the
scanner.

if there are situations, where it wouldn’t know, whether to shift or to

reduce, it reports a conflict.

http://www.cs.princeton.edu/~appel/modern/java/CUP/

7 An Expression Parser in JavaCUP

package expression;
import jaco.framework.x;
action code {: :};
parser code {:
Scanner scanner:
public Parser(Scanner scanner)

{
}
public void report_error(String msg, Object o)

{
}

this.scanner = scanner;

/% report error x/

8 An Expression Parser in JavaCUP (2)

public void report_fatal_error(String msg, Object o)

{
/* report error and throw exception x/
}
3
init with {: :};

scan with {: return scanner.nextToken(); :};

9 An Expression Parser in JavaCUP (3)

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN:
terminal NUMLIT;

non terminal Expression, Term, Factor;
start with Expression;

Expression ::= Expression PLUS Term
| Expression MINUS Term
| Term

Term = Term TIMES Factor
| Term DIV Factor
| Factor

Factor = NUMLIT
| LPAREN Expression RPAREN

10 A shift-reduce Conflict

If we enter the grammar

Expression ::= Expression PLUS Expression

without precedence JavaCUP will tell us:

xxx Shift /Reduce conflict found in state #4
between Expression ::= Expression PLUS Expression (x)
and Expression ::= Expression (x) PLUS Expression
under symbol PLUS
Resolved in favor of shifting.

Telling JavaCUP that PLUS is left associative helps!

10

11 Using Precedence

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN:
terminal NUMLIT;

non terminal Expression, Term, Factor;
precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Expression;

Expression ::= Expression PLUS Expression
Expression MINUS Expression
Expression TIMES Expression
Expression DIV Expression
NUMLIT

LPAREN Expression RPAREN

11

12 Precedence

e A terminal has the given precedence (or lowest if unsepcified)
e a production has the precedence of its last terminal (lowest if
unspecified, give if explicitely annotated).
e In a shift/reduce conflict
e if the production has higher precedence reduce

e if the terminal has higher precedence shift
e if they are equal use associativity

12

13 The if-then-else Problem

A standard problem in parsing is the if-then-else:

Statement ::= IF LPAREN Expression RPAREN Statement
| IF LPAREN Expression RPAREN Statement ELSE Statement

| ... other statements ...

reports a shift-reduce conflict. It resolves in favor of shifting, which is what
we want. We can
e Give ELSE higher priority than the production: precedence left ELSE.
e Tell JavaCUP on the command line to expect one conflict: —expect 1.

e Fix the grammar properly!

13

14 'The if-then-else Solution

Statement ::= IF LPAREN Expression RPAREN Statement
| NoShortlf

NoShortlf ::= IF LPAREN Expression RPAREN NoShortlf ELSE Statement
| ... other statements ...

14

15 A reduce-reduce Conflict

These conflicts are less common and often indicate a problem of the
language rather than the grammar.

Expression ::= MExpression
| DExpression

MExpression:= IDENT TIMES IDENT
| IDENT

DExpression::= IDENT DIV IDENT
| IDENT

+x+ Reduce/Reduce conflict found in state #4
between MExpression ::= IDENT (%)
and DExpression ::= IDENT ()
under symbols: {EOF}

Resolved in favor of the first production.

15

16 first(X), follow(X) and nullable

e first(X) are the terminals X can start with.

e A terminal t is in first(X) if there is a parse tree, such that t is the

leftmost leaf under X.
e ¢ leaves do not count.
e Example:

A="b""c" |B"d".
B="a"|e.
first(A) = { b, a,d }
e follow(X) are terminals which can follow X.
e A terminal t is in follow(X) if there is a parse tree such that t is

the leftmost leaf after the leaves under X
e Again, € leaves do not count.
e Example: follow(B) = {d }
e A non-terminal is nullable if it can derive the empty string (it may
have only e-leaves (Example: B is nullable)

16

17 Exercise

S=ES.
E=T"+" E|T.
T="x"

Find the first and follow sets for T and E. Are there any nullable

non-terminals?

17

18

How to compute first(X) and follow(X)?

. A=B"x" C. ..

first(B) C first(A).
if B is nullable then x € first(A).
Naive method: compute first, follow and nullable for right-hand side
and from that for A.
Does not work for recursion!
E=E"4+" T|T.
Idea: Start with empty sets and add elements until all conditions are
satisfied.
This is called a fixpoint algorithm (It runs until there are no more

changes, until the solution is fix).

18

19 Formal Definition: first(X), follow(X), nullable

first(X), follow(X) and nullable are the smallest sets with the following

properties:

For each production X = Y1 .. Yk, 1 <1, 57 <k:
if { Y1, ..., Yk } C nullable
X &€ nullable
if { Y1, ..., Yi-1 } C nullable
first(X) = first(X) U first(Yi)
if { Yi+1, ..., Yk } C nullable
follow(Yi) = follow(Yi) U follow(X)
if { Yi+1, ..., Yj-1 } C nullable
follow(Yi) = follow(Yi) U first(Y])

19

20 Algorithm for first(X), follow(X) and nullable

nullable = 0;
for each terminal t { first(t) = t; follow(t) = 0; }
for each nonterminal Y { first(Y) = (); follow(Y) = ; }

repeat {
nullable’ = nullable; first’ = first; follow’ = follow;

for each production X = Y1 .. Yk, 1 <14, j <k {
if { Y1, ..., Yk } C nullable
nullable = nullable U X;
if { Y1, ..., Yi-1 } C nullable
first(X) = first(X) U first(Yi);
if { Yit1, ... Yk } C nullable
follow(Yi) = follow(Yi) U follow(X);
if { Yi+1, ..., Yj=1 } C nullable
follow(Yi) = follow(Yi) U follow(Y]);
}

until (nullable = nullable’, first = first’, follow = follow');

20

21 LR(0) Parsing

e Idea: Use a DFA applied to the stack to decide whether to shift or to
reduce.

e The states of the DFA are sets of LR(0) items.

e An LR(0) item is of the form [X = A _ B |, where X is a non-terminal
and A,B are strings of terminals and non-terminals (possibly empty).

e An LR(0) item describes a possible situation during parsing, where

e X=AB. is a production, which is currently possible.

e A is on the stack.

e B is in the input.

e the _ describes the border between stack and input.
e Example: [E=T _"+" E|

21

22 LR(0) Parsing (2)

e Principle:
e shift, in a state where [X = A _ b B] if the next token is b.
e reduce, in a state [X = A]
e The resulting parser is called LR(0), since it parses left-to-right,
describes a rightmost derivation. The 0 means, that the parser uses no
lookahead on the input.

22

23 SLR Parsing

e Problem: Some states contain shift and reduce items.

e Example:
S=ES}.
E=T"+"E|T.
T ="x".

e LR(0) state construction gives a state containing the items
[E=T_"4+" E]
E=T]
o If we see "+" as the next input token should we shift or reduce?
e Solution: Reduce only if the symbol is in follow(E).
e The resulting parser is called simple LR or SLR.
e The number of states is the same as in LR(0).

23

24 LALR(1) Parsing

e Sometimes, in specific states not all terminals from follow(X) can
really occur.

e Idea: Propagate state-specific follow symbols.

e Reduce only if the symbol is in the state specific follow symbols.

e The resulting parser is called LALR(1) for Look-Ahead-LR.

e The number of states is the same as in LR(0) and SLR.

e This is, what JavaCUP uses (also yacc, bison).

e If an LALR(1) parser generator gives a conflict, then for all practical

purposes it cannot know, what to do in certain situations.

24

25 LR(1) Parsing

e LR(1) parsing refines the notion of state. A state is now a set of
LR(1) items, where each item is of the form [X =A _B; c] and cis a
terminal.

X=AB. is a production, which is currently possible.

A is on the stack.
B c is in the input.

the _ describes the border between stack and input.

e The rest of the construction is similar to LR(0), except that we reduce
in a state with item [X = A _; c] only if the next input token is c.

e The result is called LR(1) parsing, because now we use one token
lookahead to make our decision.

e LR(1) parsers are slightly more powerful than LALR(1) parsers.

e But, there are many more LR(1) states than LR(0) states. Often we

have a state explosion

25

26 Grammar in JavaCUP

terminal PLUS, NUMLIT;
non terminal Expression, Term;
start with Expression;

Expression ::= Term PLUS Expression
| Term
Term = NUMLIT

26

27 States in JavaCUP

The option —dump_states yields the following output

START lalr_state [0]: {

[Expression ::= (x) Term , {EOF }]

[Expression ::= (x) Term PLUS Expression , {EOF }]
Term ::= (%) NUMLIT , {EOF PLUS }]

$START ::= (x) Expression EOF , {EOF }]

}

transition on Expression to state [3]
transition on NUMLIT to state [2]
transition on Term to state [1]
lalr_state [1]: {
[Expression ::= Term (x) , {EOF }]
[Expression ::= Term (%) PLUS Expression , {EOF }]
}

transition on PLUS to state [5]

27

lalr_state [2]: {
[Term ::= NUMLIT (%) , {EOF PLUS }]
}
lalr_state [3]: {
[$START ::= Expression (x) EOF , {EOF }]
}
transition on EOF to state [4]
lalr_state [4]: {
[$START ::= Expression EOF (x) , {EOF }]

}

28

lalr_state [5]: {

[Expression ::= (x) Term , {EOF }]

[Expression ::= Term PLUS (%) Expression , {EOF }]
[Expression ::= (x) Term PLUS Expression , {EOF }]
Term ::= (x) NUMLIT , {EOF PLUS }]

}

transition on Expression to state [0]
transition on NUMLIT to state [2]
transition on Term to state [1]
lalr_state [6]: {
[Expression ::= Term PLUS Expression (x) , {EOF }]
}

29

28 Debugging JavaCUP

Calling debug_parse() in ParserTest instead of parse() (You can use —debug),
using input 5+3 yields

Initializing parser

Current Symbol is #38

Shift under term #8 to state #2

Current token is #2

Reduce with prod #3 [NT=2, SZ=1]
Goto state #1

Shift under term #2 to state #5

Current token is #38

Shift under term #8 to state #2

Current token is #0

30

Reduce with prod #3 [NT=2, SZ=1]
Goto state #1
Reduce with prod #2 [NT=1, SZ=1]
Goto state #6
Reduce with prod #1 [NT=1, SZ=3]
Goto state #3

Shift under term #0 to state #4

Current token is #0

Reduce with prod #0 [NT=0, SZ=2]
Goto state #-1

31

29 If again

Statement ::= |F IDENT Statement
| IF IDENT Statement ELSE Statement
| RETURN NUMLIT SEMI

reports a shift-reduce conflict. Why?

if x if y return 3; else return 7,

32

30 If Solution

Partition statements and allow in then-branch no short ifs.

Statement ::= Shortlf
| NoShortlf

Shortlf := |F IDENT Statement

NoShortlf ::= IF IDENT NoShortlf ELSE Statement
| RETURN NUMLIT

33

31 Error Recovery

e After an error, the parser should be able to continue processing.

e Processing is for finding other errors, not for code generation or
interpretation. These get disabled after the first error.

e (Question: How can the parser recover from an error and resume

normal parsing?

34

32 Error Recovery in Bottom-Up

e There are different schemes. The following is implemented in
JavaCUP, yacc, bison.

e Introduce a special symbol error.

e The author of a parser can use error in productions.

e For instance:
Statement = Assignment
| IfStatement

| error”;

35

33 Error Recovery in Bottom-Up (2)

e If the parser encounters an error, it will pop the stack until it gets into
a state, where error is legal.

e At this point it shifts error onto the stack.

e Then, the input tokens are skipped, until the next input token is one
that can legally follow the new state.

e This scheme is very dependent on a good choice of error productions.

e Assume a production Statement = error ”;

e The parser encounters error inside a statement. It will pop the
stack until it expects a statement.

e At this point it shifts error onto the stack.

e Then, the input tokens are skipped, until ";" is found.

36

34

Where to put error

Different people recommend different things.
It is a good idea to have a terminal after error to ensure termination.

Examples:
Statement ::= error SEMI
| LBRACE error RBRACE
Expression ::= LPAREN error RPAREN
The generated parser will tell you the exact position of the error.

37

35 Semantic Actions

e A parser usually does more than just recognize syntax.
e [t could:
e Evaluate code (simple interpreter)

e Emit code (single pass compiler)
e Build an internal data structure (multi pass compiler, interpreter)

e Generally, a parser performs semantic actions

e In a machine-generated bottom-up parser, they are added to the
grammar submitted to the parser generator.

e In a recursive descent parser, semantic actions are embedded in the

recognizer routines.

38

36 An Interpreter for Expressions

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN:
terminal Integer NUMLIT;

non terminal Program;

non terminal Integer Expression, Term, Factor;
precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;

39

37 An Interpreter for Expressions (2)

Program .:= Expression:e
{: System.out.printin(e.intValue()); :}
Expression ::= Expression:e PLUS Term:t
{: RESULT = new Integer(e.intValue() + t.intValue()); :}
| Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() — t.intValue()); :}
| Term:t
{: RESULT =t; :}

40

38 An Interpreter for Expressions (3)

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() * f.intValue()); :}
| Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() / f.intValue()); :}
| Factor:f
{: RESULT =f; :}

Factor = NUMLIT:n
{: RESULT = n; :}
| LPAREN Expression:e RPAREN
{: RESULT =e; :}

41

39 Top-Down Parsing

e Regular languages are limited in that they cannot express nesting.

e Therefore, finite state machines cannot recognize context-free
grammars.

e Let’s try it anyway: A = ident A numlit | numlit. leads after

simplification to the following parser:

void A() {
if (token == IDENT) {
nextToken();
AQ);
if (token == NUMLIT) nextToken(); else error();
} else if (token == NUMLIT)
nextToken();
else
error();

42

40 Deriving a Parser from EBNF

To derive a parser from a context-free grammar written in EBNF style:

e Introduce one function void A() for each non-terminal A

e The task of A() is to recognize sub-sentences derived from A, or issue
an error if no A was found.

e Translate all regular expressions on the right-hand-side of productions

as before, but

e every occurrence of a non-terminal B maps to B()
e Recursion in the grammar translates naturally to recursion in the

parser.
e This technique of writing parsers is called parsing by recursive descent

or predictive parsing.

43

41 A Parser for Expressions

Expression = Expression ("= | "4") Term | Term.
Term = Term ("%" | " /") Factor | Factor.
Factor = numlit | " (" Expression ")".

void Expression() {
if (token == NUMLIT || token == LPAREN) {

Expression();
if (token == MINUS || token == PLUS)

next Token();
else error();
Term();
} else {
Term();
h

44

42 Eliminating Left Recursion

Expression = Term { ("=" | "+") Term }.
Term = Factor { ("*" | " /") Factor }.
Factor = numlit | " (" Expression ")".

void Expression() {

Term();
while (token == MINUS || token == PLUS) {

next Token();
Term();

45

43 Another Problem

Factor = ident | ident "[" Expression "]" | numlit.

void Factor() {
if (token == IDENT) {
77
} else {
if (token == NUMLIT)
nextToken();
else error();

46

44 Left Factoring

Factor = ident ["[" Expression "|" | | numlit.

void Factor() {
if (token == IDENT) {
if (token == LBRACKET) {
nextToken();
Expression();
if (token == RBRACKET)
nextToken();
else error();

}
} else {

if (token == NUMLIT)
next Token();
else error();

47

45 LL(1) Grammar

e Definition: A simple BNF grammar is LL(1) if for all nonterminals X:
if X appears on the left-hand side of two productions X=E1. and
X=E2. then

e first(E1) N first(E2) = 0.
e cither (neither E1 nor E2 is nullable)
or (exactly one, say E1 is nullable and first(X) N follow(E2) = 0.
e LL(1) stands for "left-to-right-parse, leftmost derivation, 1 symbol
lookahead”.
e Recursive descent parsers work only for LI(1) grammars.
e Elimination of left recursion and left-factoring work often, but not

always.

48

46 Error Recovery for Top-Down

e We choose a set of stop-symbols, e.g. } ;)

e If we encounter an error, we call skip(), give an error message and

return.

e skip() skips the input to the next stop symbol.
e It also skips subblocks { ... } completely.

e We do not print two error messages for the same position.

{
}

a=>5x(34);

49

47 Summary Top-Down Parsing

e A context-free grammar can be converted directly into a program
scheme for a recursive descent parser.

e A recursive-descent parser builds a derivation top down, from the
start symbol towards the terminal symbols.

e Weakness: Must decide what to do based on first input token.

e This works only if the language is LL(1).

50

48 A Hierarchy of Grammar Classes

LR(k + 1) > LR(k) (Further lookahead helps)

LL(k+1) > LL(k) (Further lookahead helps)
e LR(k) > LL(k) (LR is better than LL)

LR(1) > LALR(1) > SLR > LR(0)

51

49 Top-Down / Bottom-Up

Top-Down

+ easy to write by hand.

+ flexible embedding in compiler possible.
- harder to maintain.

- error recovery can be tricky.

- deep recursion can be inefficient.

Bottom-Up

+ larger class of languages and grammar.
- needs tool to generate

- less flexible to embed in compiler

- depends on quality of tool

Mixtures are possible. Some commercial compilers use recursive descent,

with operator precedence for expressions to get rid of deep recursion.

52

	Part IV: Parsing
	Scanners and Parsers
	From EBNF to BNF
	Bottom-Up Parsing
	Simple Answer: Operator Precedence
	The Parser Generator JavaCUP
	An Expression Parser in JavaCUP
	An Expression Parser in JavaCUP (2)
	An Expression Parser in JavaCUP (3)
	A shift-reduce Conflict
	Using Precedence
	Precedence
	The if-then-else Problem
	The if-then-else Solution
	A reduce-reduce Conflict
	{sf first(X)}, {sf follow(X)} and {sf nullable}
	Exercise
	How to compute {sf first(X)} and {sf follow(X)}?
	Formal Definition: {sf first(X)}, {sf follow(X)}, {sf nullable}
	Algorithm for {sf first(X)}, {sf follow(X)} and {sf nullable}
	LR(0) Parsing
	LR(0) Parsing (2)
	SLR Parsing
	LALR(1) Parsing
	LR(1) Parsing
	Grammar in JavaCUP
	States in JavaCUP
	Debugging JavaCUP
	If again
	If Solution
	Error Recovery
	Error Recovery in Bottom-Up
	Error Recovery in Bottom-Up (2)
	Where to put {sf error}
	Semantic Actions
	An Interpreter for Expressions
	An Interpreter for Expressions (2)
	An Interpreter for Expressions (3)
	Top-Down Parsing
	Deriving a Parser from EBNF
	A Parser for Expressions
	Eliminating Left Recursion
	Another Problem
	Left Factoring
	LL(1) Grammar
	Error Recovery for Top-Down
	Summary Top-Down Parsing
	A Hierarchy of Grammar Classes
	Top-Down / Bottom-Up

