
1 Part IV: Parsing

• Bottom-Up Parsing
• Parsing with JavaCUP
• Top-Down Parsing
• Error-Recovery

1



2 Scanners and Parsers

• Most compilers in practice have both a scanner for the lexical syntax
and a parser for the context-free syntax.
• better modularity
• separation of concerns
• Characters ⇒Scanner ⇒Tokens
• Tokens ⇒Parser ⇒Syntax-Tree

2



3 From EBNF to BNF

For building parsers (especially bottom-up) a BNF grammar is often
better, than EBNF. But it’s easy to convert an EBNF Grammar to BNF:

• Convert every repetition { E } to a fresh non-terminal X and add
X = ε | X E.
• Convert every option [ E ] to a fresh non-terminal X and add

X = ε | E.
(We can convert X = A [ E ] B. to X = A E B | A B.)

• Convert every group ( E ) to a fresh non-terminal X and add
X = E.

• We can even do away with alternatives by having several productions
with the same non-terminal.
X = E | E’. becomes X = E. X = E’.

3



4 Bottom-Up Parsing

• A bottom-up parser builds a derivation from the terminal symbols,
working toward the start symbol.
• It consists of a stack and an input.
• Four actions:

• shift, which pushes the next token onto the stack
• reduce, removes Y1, ...,Yk, which are the right-hand side of some

production X = Y1 ... Yk. From the top of the stack and replaces
them by X.

• accept, ends the parser with success.
• error, ends the parser with an error message.

• Question: How does the parser know, which action to invoke.

4



5 Simple Answer: Operator Precedence

• Suitable for languages of the form
Expression = Operand Operator Operand with operands of varying
precedence and associativity.
• Principle (token is the next input token):

if (token is an operand) shift;
else if (stack does not contain an operator) shift;
else {

top = (topmost operator of stack);
if (precedence(top) < precedence(token)) shift;
else if (precedence(top) > precedence(token)) reduce;
else if (top and token are right associative) shift;
else if (top and token are left associative) reduce;
else error;

}

5



6 The Parser Generator JavaCUP

The original version is from
http://www.cs.princeton.edu/ appel/modern/java/CUP/, but we use a
local modified version.

• generates a class Parser.java, which contains the parser.
• generates a class Parser.tables, which contains the parsing tables.
• generates a class Tokens.java, which is suitable to be used by the

scanner.
• if there are situations, where it wouldn’t know, whether to shift or to

reduce, it reports a conflict.

6

http://www.cs.princeton.edu/~appel/modern/java/CUP/


7 An Expression Parser in JavaCUP

package expression;
import jaco.framework.∗;
action code {: :};
parser code {:

Scanner scanner;
public Parser(Scanner scanner)
{

this.scanner = scanner;
}
public void report error(String msg, Object o)
{

/∗ report error ∗/
}

7



8 An Expression Parser in JavaCUP (2)

public void report fatal error(String msg, Object o)
{

/∗ report error and throw exception ∗/
}

:};
init with {: :};
scan with {: return scanner.nextToken(); :};

8



9 An Expression Parser in JavaCUP (3)

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN;
terminal NUMLIT;
non terminal Expression, Term, Factor;
start with Expression;

Expression ::= Expression PLUS Term
| Expression MINUS Term
| Term
;

Term ::= Term TIMES Factor
| Term DIV Factor
| Factor
;

Factor ::= NUMLIT
| LPAREN Expression RPAREN
;

9



10 A shift-reduce Conflict

If we enter the grammar

Expression ::= Expression PLUS Expression
;

without precedence JavaCUP will tell us:

∗∗∗ Shift/Reduce conflict found in state #4
between Expression ::= Expression PLUS Expression (∗)
and Expression ::= Expression (∗) PLUS Expression
under symbol PLUS
Resolved in favor of shifting.

Telling JavaCUP that PLUS is left associative helps!

10



11 Using Precedence

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN;
terminal NUMLIT;
non terminal Expression, Term, Factor;
precedence left PLUS, MINUS;
precedence left TIMES, DIV;
start with Expression;

Expression ::= Expression PLUS Expression
| Expression MINUS Expression
| Expression TIMES Expression
| Expression DIV Expression
| NUMLIT
| LPAREN Expression RPAREN
;

11



12 Precedence

• A terminal has the given precedence (or lowest if unsepcified)
• a production has the precedence of its last terminal (lowest if

unspecified, give if explicitely annotated).
• In a shift/reduce conflict

• if the production has higher precedence reduce
• if the terminal has higher precedence shift
• if they are equal use associativity

12



13 The if-then-else Problem

A standard problem in parsing is the if-then-else:

Statement ::= IF LPAREN Expression RPAREN Statement
| IF LPAREN Expression RPAREN Statement ELSE Statement
| ... other statements ...
;

reports a shift-reduce conflict. It resolves in favor of shifting, which is what
we want. We can

• Give ELSE higher priority than the production: precedence left ELSE.
• Tell JavaCUP on the command line to expect one conflict: –expect 1.
• Fix the grammar properly!

13



14 The if-then-else Solution

Statement ::= IF LPAREN Expression RPAREN Statement
| NoShortIf
;

NoShortIf ::= IF LPAREN Expression RPAREN NoShortIf ELSE Statement
| ... other statements ...
;

14



15 A reduce-reduce Conflict

These conflicts are less common and often indicate a problem of the
language rather than the grammar.

Expression ::= MExpression
| DExpression
;

MExpression::= IDENT TIMES IDENT
| IDENT
;

DExpression::= IDENT DIV IDENT
| IDENT
;

∗∗∗ Reduce/Reduce conflict found in state #4
between MExpression ::= IDENT (∗)
and DExpression ::= IDENT (∗)
under symbols: {EOF}
Resolved in favor of the first production.

15



16 first(X), follow(X) and nullable

• first(X) are the terminals X can start with.

• A terminal t is in first(X) if there is a parse tree, such that t is the
leftmost leaf under X.

• ε leaves do not count.
• Example:

A = ”b” ”c” | B ”d”.
B = ”a” | ε.

first(A) = { b, a, d }
• follow(X) are terminals which can follow X.

• A terminal t is in follow(X) if there is a parse tree such that t is
the leftmost leaf after the leaves under X

• Again, ε leaves do not count.
• Example: follow(B) = { d }

• A non-terminal is nullable if it can derive the empty string (it may
have only ε-leaves (Example: B is nullable)

16



17 Exercise

S = E $.
E = T ”+” E | T.
T = ”x”.

Find the first and follow sets for T and E. Are there any nullable
non-terminals?

17



18 How to compute first(X) and follow(X)?

... A = B ”x” C. ...

• first(B) ⊆ first(A).
• if B is nullable then x ∈ first(A).
• Naive method: compute first, follow and nullable for right-hand side

and from that for A.
• Does not work for recursion!

E = E ”+” T | T.

• Idea: Start with empty sets and add elements until all conditions are
satisfied.

• This is called a fixpoint algorithm (It runs until there are no more
changes, until the solution is fix).

18



19 Formal Definition: first(X), follow(X), nullable

first(X), follow(X) and nullable are the smallest sets with the following
properties:

For each production X = Y1 .. Yk, 1 ≤ i, j ≤ k:
if { Y1, ..., Yk } ⊆ nullable

X ∈ nullable
if { Y1, ..., Yi–1 } ⊆ nullable

first(X) = first(X) ∪ first(Yi)
if { Yi+1, ..., Yk } ⊆ nullable

follow(Yi) = follow(Yi) ∪ follow(X)
if { Yi+1, ..., Yj–1 } ⊆ nullable

follow(Yi) = follow(Yi) ∪ first(Yj)

19



20 Algorithm for first(X), follow(X) and nullable

nullable = ∅;
for each terminal t { first(t) = t; follow(t) = ∅; }
for each nonterminal Y { first(Y) = ∅; follow(Y) = ∅; }
repeat {

nullable’ = nullable; first’ = first; follow’ = follow;
for each production X = Y1 .. Yk, 1 ≤ i, j ≤ k {

if { Y1, ..., Yk } ⊆ nullable
nullable = nullable ∪ X;

if { Y1, ..., Yi–1 } ⊆ nullable
first(X) = first(X) ∪ first(Yi);

if { Yi+1, ..., Yk } ⊆ nullable
follow(Yi) = follow(Yi) ∪ follow(X);

if { Yi+1, ..., Yj–1 } ⊆ nullable
follow(Yi) = follow(Yi) ∪ follow(Yj);

}
until (nullable = nullable’, first = first’, follow = follow’);

20



21 LR(0) Parsing

• Idea: Use a DFA applied to the stack to decide whether to shift or to
reduce.

• The states of the DFA are sets of LR(0) items.
• An LR(0) item is of the form [X = A B ], where X is a non-terminal

and A,B are strings of terminals and non-terminals (possibly empty).
• An LR(0) item describes a possible situation during parsing, where

• X=AB. is a production, which is currently possible.
• A is on the stack.
• B is in the input.
• the describes the border between stack and input.

• Example: [ E = T ”+” E ]

21



22 LR(0) Parsing (2)

• Principle:

• shift, in a state where [X = A b B] if the next token is b.
• reduce, in a state [X = A ]

• The resulting parser is called LR(0), since it parses left-to-right,
describes a rightmost derivation. The 0 means, that the parser uses no
lookahead on the input.

22



23 SLR Parsing

• Problem: Some states contain shift and reduce items.
• Example:

S = E $.
E = T ”+” E | T.
T = ”x”.

• LR(0) state construction gives a state containing the items
[E = T ”+” E]
[E = T ]

• If we see ”+” as the next input token should we shift or reduce?
• Solution: Reduce only if the symbol is in follow(E).
• The resulting parser is called simple LR or SLR.
• The number of states is the same as in LR(0).

23



24 LALR(1) Parsing

• Sometimes, in specific states not all terminals from follow(X) can
really occur.
• Idea: Propagate state-specific follow symbols.
• Reduce only if the symbol is in the state specific follow symbols.
• The resulting parser is called LALR(1) for Look-Ahead-LR.
• The number of states is the same as in LR(0) and SLR.
• This is, what JavaCUP uses (also yacc, bison).
• If an LALR(1) parser generator gives a conflict, then for all practical

purposes it cannot know, what to do in certain situations.

24



25 LR(1) Parsing

• LR(1) parsing refines the notion of state. A state is now a set of
LR(1) items, where each item is of the form [X = A B ; c] and c is a
terminal.

• X=AB. is a production, which is currently possible.
• A is on the stack.
• B c is in the input.
• the describes the border between stack and input.

• The rest of the construction is similar to LR(0), except that we reduce
in a state with item [X = A ; c] only if the next input token is c.
• The result is called LR(1) parsing, because now we use one token

lookahead to make our decision.
• LR(1) parsers are slightly more powerful than LALR(1) parsers.
• But, there are many more LR(1) states than LR(0) states. Often we

have a state explosion

25



26 Grammar in JavaCUP

terminal PLUS, NUMLIT;
non terminal Expression, Term;
start with Expression;

Expression ::= Term PLUS Expression
| Term
;

Term ::= NUMLIT
;

26



27 States in JavaCUP

The option –dump states yields the following output

START lalr state [0]: {
[Expression ::= (∗) Term , {EOF }]
[Expression ::= (∗) Term PLUS Expression , {EOF }]
[Term ::= (∗) NUMLIT , {EOF PLUS }]
[$START ::= (∗) Expression EOF , {EOF }]

}
transition on Expression to state [3]
transition on NUMLIT to state [2]
transition on Term to state [1]
lalr state [1]: {

[Expression ::= Term (∗) , {EOF }]
[Expression ::= Term (∗) PLUS Expression , {EOF }]

}
transition on PLUS to state [5]

27



lalr state [2]: {
[Term ::= NUMLIT (∗) , {EOF PLUS }]

}
lalr state [3]: {

[$START ::= Expression (∗) EOF , {EOF }]
}
transition on EOF to state [4]
lalr state [4]: {

[$START ::= Expression EOF (∗) , {EOF }]
}

28



lalr state [5]: {
[Expression ::= (∗) Term , {EOF }]
[Expression ::= Term PLUS (∗) Expression , {EOF }]
[Expression ::= (∗) Term PLUS Expression , {EOF }]
[Term ::= (∗) NUMLIT , {EOF PLUS }]

}
transition on Expression to state [6]
transition on NUMLIT to state [2]
transition on Term to state [1]
lalr state [6]: {

[Expression ::= Term PLUS Expression (∗) , {EOF }]
}

29



28 Debugging JavaCUP

Calling debug parse() in ParserTest instead of parse() (You can use –debug),
using input 5+3 yields

# Initializing parser
# Current Symbol is #8
# Shift under term #8 to state #2
# Current token is #2
# Reduce with prod #3 [NT=2, SZ=1]
# Goto state #1
# Shift under term #2 to state #5
# Current token is #8
# Shift under term #8 to state #2
# Current token is #0

30



# Reduce with prod #3 [NT=2, SZ=1]
# Goto state #1
# Reduce with prod #2 [NT=1, SZ=1]
# Goto state #6
# Reduce with prod #1 [NT=1, SZ=3]
# Goto state #3
# Shift under term #0 to state #4
# Current token is #0
# Reduce with prod #0 [NT=0, SZ=2]
# Goto state #–1

31



29 If again

Statement ::= IF IDENT Statement
| IF IDENT Statement ELSE Statement
| RETURN NUMLIT SEMI
;

reports a shift-reduce conflict. Why?

if x if y return 3; else return 7;

32



30 If Solution

Partition statements and allow in then-branch no short ifs.
Statement ::= ShortIf

| NoShortIf
;

ShortIf ::= IF IDENT Statement
;

NoShortIf ::= IF IDENT NoShortIf ELSE Statement
| RETURN NUMLIT
;

33



31 Error Recovery

• After an error, the parser should be able to continue processing.
• Processing is for finding other errors, not for code generation or

interpretation. These get disabled after the first error.
• Question: How can the parser recover from an error and resume

normal parsing?

34



32 Error Recovery in Bottom-Up

• There are different schemes. The following is implemented in
JavaCUP, yacc, bison.
• Introduce a special symbol error.
• The author of a parser can use error in productions.
• For instance:

Statement = Assignment
| IfStatement
| error ”;”
;

35



33 Error Recovery in Bottom-Up (2)

• If the parser encounters an error, it will pop the stack until it gets into
a state, where error is legal.
• At this point it shifts error onto the stack.
• Then, the input tokens are skipped, until the next input token is one

that can legally follow the new state.
• This scheme is very dependent on a good choice of error productions.
• Assume a production Statement = error ”;”

• The parser encounters error inside a statement. It will pop the
stack until it expects a statement.

• At this point it shifts error onto the stack.
• Then, the input tokens are skipped, until ”;” is found.

36



34 Where to put error

• Different people recommend different things.
• It is a good idea to have a terminal after error to ensure termination.
• Examples:

Statement ::= error SEMI
| LBRACE error RBRACE
;

Expression ::= LPAREN error RPAREN
;

• The generated parser will tell you the exact position of the error.

37



35 Semantic Actions

• A parser usually does more than just recognize syntax.
• It could:

• Evaluate code (simple interpreter)
• Emit code (single pass compiler)
• Build an internal data structure (multi pass compiler, interpreter)

• Generally, a parser performs semantic actions
• In a machine-generated bottom-up parser, they are added to the

grammar submitted to the parser generator.
• In a recursive descent parser, semantic actions are embedded in the

recognizer routines.

38



36 An Interpreter for Expressions

terminal PLUS, MINUS, TIMES, DIV, LPAREN, RPAREN;
terminal Integer NUMLIT;

non terminal Program;
non terminal Integer Expression, Term, Factor;
precedence left PLUS, MINUS;
precedence left TIMES, DIV;

start with Program;

39



37 An Interpreter for Expressions (2)

Program ::= Expression:e
{: System.out.println(e.intValue()); :}

;
Expression ::= Expression:e PLUS Term:t

{: RESULT = new Integer(e.intValue() + t.intValue()); :}
| Expression:e MINUS Term:t
{: RESULT = new Integer(e.intValue() – t.intValue()); :}

| Term:t
{: RESULT = t; :}

;

40



38 An Interpreter for Expressions (3)

Term ::= Term:t TIMES Factor:f
{: RESULT = new Integer(t.intValue() ∗ f.intValue()); :}

| Term:t DIV Factor:f
{: RESULT = new Integer(t.intValue() / f.intValue()); :}

| Factor:f
{: RESULT = f; :}

;
Factor ::= NUMLIT:n

{: RESULT = n; :}
| LPAREN Expression:e RPAREN
{: RESULT = e; :}

;

41



39 Top-Down Parsing

• Regular languages are limited in that they cannot express nesting.
• Therefore, finite state machines cannot recognize context-free

grammars.
• Let’s try it anyway: A = ident A numlit | numlit. leads after

simplification to the following parser:
void A() {

if (token == IDENT) {
nextToken();
A();
if (token == NUMLIT) nextToken(); else error();

} else if (token == NUMLIT)
nextToken();

else
error();

}

42



40 Deriving a Parser from EBNF

To derive a parser from a context-free grammar written in EBNF style:

• Introduce one function void A() for each non-terminal A

• The task of A() is to recognize sub-sentences derived from A, or issue
an error if no A was found.

• Translate all regular expressions on the right-hand-side of productions
as before, but

• every occurrence of a non-terminal B maps to B()

• Recursion in the grammar translates naturally to recursion in the
parser.

• This technique of writing parsers is called parsing by recursive descent
or predictive parsing.

43



41 A Parser for Expressions

Expression = Expression ( ”–” | ”+” ) Term | Term.
Term = Term ( ”∗” | ”/” ) Factor | Factor.
Factor = numlit | ”(” Expression ”)”.

void Expression() {
if (token == NUMLIT || token == LPAREN) {

Expression();
if (token == MINUS || token == PLUS)

nextToken();
else error();
Term();

} else {
Term();

}

44



42 Eliminating Left Recursion

Expression = Term { ( ”–” | ”+” ) Term }.
Term = Factor { ( ”∗” | ”/” ) Factor }.
Factor = numlit | ”(” Expression ”)”.

void Expression() {
Term();
while (token == MINUS || token == PLUS) {

nextToken();
Term();

}
}

45



43 Another Problem

Factor = ident | ident ”[” Expression ”]” | numlit.

void Factor() {
if (token == IDENT) {

??
} else {

if (token == NUMLIT)
nextToken();

else error();
}

}

46



44 Left Factoring

Factor = ident [ ”[” Expression ”]” ] | numlit.

void Factor() {
if (token == IDENT) {

if (token == LBRACKET) {
nextToken();
Expression();
if (token == RBRACKET)

nextToken();
else error();

}
} else {

if (token == NUMLIT)
nextToken();

else error();
}

}
47



45 LL(1) Grammar

• Definition: A simple BNF grammar is LL(1) if for all nonterminals X:
if X appears on the left-hand side of two productions X=E1. and
X=E2. then

• first(E1) ∩ first(E2) = ∅.
• either (neither E1 nor E2 is nullable)

or (exactly one, say E1 is nullable and first(X) ∩ follow(E2) = ∅.
• LL(1) stands for ”left-to-right-parse, leftmost derivation, 1 symbol

lookahead”.
• Recursive descent parsers work only for LL(1) grammars.
• Elimination of left recursion and left-factoring work often, but not

always.

48



46 Error Recovery for Top-Down

• We choose a set of stop-symbols, e.g. } ; )

• If we encounter an error, we call skip(), give an error message and
return.

• skip() skips the input to the next stop symbol.
• It also skips subblocks { ... } completely.

• We do not print two error messages for the same position.

{
a = 5 ∗ (3 4);

}

49



47 Summary Top-Down Parsing

• A context-free grammar can be converted directly into a program
scheme for a recursive descent parser.
• A recursive-descent parser builds a derivation top down, from the

start symbol towards the terminal symbols.
• Weakness: Must decide what to do based on first input token.
• This works only if the language is LL(1).

50



48 A Hierarchy of Grammar Classes

• LR(k + 1) > LR(k) (Further lookahead helps)
• LL(k + 1) > LL(k) (Further lookahead helps)
• LR(k) > LL(k) (LR is better than LL)
• LR(1) > LALR(1) > SLR > LR(0)

51



49 Top-Down / Bottom-Up

Top-Down

+ easy to write by hand.
+ flexible embedding in compiler possible.
- harder to maintain.
- error recovery can be tricky.
- deep recursion can be inefficient.

Bottom-Up

+ larger class of languages and grammar.
- needs tool to generate
- less flexible to embed in compiler
- depends on quality of tool

Mixtures are possible. Some commercial compilers use recursive descent,
with operator precedence for expressions to get rid of deep recursion.

52


	Part IV: Parsing
	Scanners and Parsers
	From EBNF to BNF
	Bottom-Up Parsing
	Simple Answer: Operator Precedence
	The Parser Generator JavaCUP
	An Expression Parser in JavaCUP
	An Expression Parser in JavaCUP (2)
	An Expression Parser in JavaCUP (3)
	A shift-reduce Conflict
	Using Precedence
	Precedence
	The if-then-else Problem
	The if-then-else Solution
	A reduce-reduce Conflict
	{sf first(X)}, {sf follow(X)} and {sf nullable}
	Exercise
	How to compute {sf first(X)} and {sf follow(X)}?
	Formal Definition: {sf first(X)}, {sf follow(X)}, {sf nullable}
	Algorithm for {sf first(X)}, {sf follow(X)} and {sf nullable}
	LR(0) Parsing
	LR(0) Parsing (2)
	SLR Parsing
	LALR(1) Parsing
	LR(1) Parsing
	Grammar in JavaCUP
	States in JavaCUP
	Debugging JavaCUP
	If again
	If Solution
	Error Recovery
	Error Recovery in Bottom-Up
	Error Recovery in Bottom-Up (2)
	Where to put {sf error}
	Semantic Actions
	An Interpreter for Expressions
	An Interpreter for Expressions (2)
	An Interpreter for Expressions (3)
	Top-Down Parsing
	Deriving a Parser from EBNF
	A Parser for Expressions
	Eliminating Left Recursion
	Another Problem
	Left Factoring
	LL(1) Grammar
	Error Recovery for Top-Down
	Summary Top-Down Parsing
	A Hierarchy of Grammar Classes
	Top-Down / Bottom-Up

