1 Part II: Java Explorer (Jex)

Example program to compute and print the factorial of 3:

import java.lang.x;

int fac (int x) { /* defines a function x/
int res; /x defines a local variable */
res = 1; /x sets a local variable x/
while (x > 1) {
res = res * X; /% uses local variable and argument x*/
X =x-1:
f
return res;
}
int a; a = fac(3); /x defines global variable, calls f %/
System.out.printIn(a); /% java class System, static attribute out,

dynamic method call */




2 Unqualified Names

An unqualified name (it does not appear right of a ".") is defined,

e if the definition is in the same or an enclosing block.
e if the name is defined before accessing it.

If there is more than one definition, then the innermost definition is used.

int i;

int foo(int n) {
int i;
if (n ==0) {

return I;

}

return foo(n-1);
}

If an unqualified name is not defined it is assumed to be a Java class.

e We look for it on the SCLASSPATH using imports as in Java.

2




3 Qualified Names

If a qualified name is not followed by parenthesis:

e (Classname.field refers to a static field of the class.
e object.field refers to a field of the object.

If they are followed by parenthesis:

e Classname.method(...) calls the static method of the class.

e object.method(...) call the method of the object.

e We choose dynamically (at call time) the best fitting method for the
argument types, using reflection.

e If we cannot find an appropriate method an error occurs.




4 Types

e Primitive types

e int (1,2,7)
e boolean (true, false)
e Java classes

e java.lang.String (" hello")
e java.io.PrintStream (System.out)

In a type position, a name is always referring to a class.




5 The new expression

We can generate new objects using new

e new Classname (...)
e We choose dynamically the best constructor, depending on the

arguments.




6

Operator expressions

We have binary operators with the following precedence:

and != also work on objects, the others only on primitive types.




7 Concrete Syntax of Jex

Program = { Statement | Definition }.
Definition Formal ;"

| FunDef
| "import” { IDENT "." } ("%" | IDENT )";"

FunDef = Type IDENT " (" [ Formals | ")" Statement.
Type = "int" | "boolean” | IDENT.

Formals = Formal {"," Formal }.

Formal = Type IDENT.




Statement

Expr

Operator

Exprs

"if" " (" Expr")" Statement [ "else” Statement |
"while" " (" Expr")" Statement

"{" { Statement | Formal ";" } "}"

Expr ;"

[ Expr "." | IDENT "=" Expr";"

"return” Expr ;"

NUMLIT | STRINGLIT | " True” | " False”
[ Expr "." ] IDENT ["(" [ Exprs|")" ]
Expr Operator Expr

"new” Type " (" Exprs")"

e

T T |7
&&" | "]

Expr { Expr }




8 Lexical Syntax of Jex

e Tokens

ident = letter { letter | digit }.
numlit = digit { digit }.
stringlit="\"" { "\" noNewline | noEscapeOrQuoteOrNewlines } "\"".

All quoted terminals in the concrete syntax are valid tokens.

e Auxiliary

letter ="a" | ...|"Z" |"A” RVA
digit ="0" "9,
noNewline = ...

e White space and comments

whitespace =" " | "\n" | "\t"
comment ="/""%" { noStar

"« {"*" } noStarOrSlash } "«" " /.




	Part II: Java Explorer (Jex)
	Unqualified Names
	Qualified Names
	Types
	The new expression
	Operator expressions
	Concrete Syntax of Jex
	Lexical Syntax of Jex

