
1 Part I: Compilation: Overview and

Foundations

• Why study compilation?
• The task and structure of a compiler
• Language and syntax
• Formal languages

1

2 Why study Compiler Construction?

There are very few people who will write compilers for a living, so why
bother?

• A competent computer professional knows about high-level
programming and hardware.
• A compiler connects the two.
• Therefore, understanding compilation techniques is essential for

understanding how programming languages and computers hang
together.

• Many applications contain little languages for customization and
flexible control

• Word macros, layout descriptions, document descriptions
• Compiler techniques are needed to properly design and implement

these extension languages

2

3 Why study Compiler Construction? (2)

• Data formats are also formal languages. More and more data in
interchangeable format look like a formal language (e.g. HTML, XML)
• Compiler techniques are useful for reading, manipulating, and writing

data
• Besides, compilers are excellent examples of large and complex system

• which can be specified rigorously
• which can be implemented only by combining theory and practice

3

4 The Task of a Compiler

• The main task of a compiler is to map programs written in a given
source language into a target language
• Often, the source language is a programming language and the target

language is a machine language
• Some exceptions: Source-to-source translators, machine-code

translation, data manipulation in XML
• Part of the task of a compiler is also to detect, whether a given

program conforms to the rules of the source language.
• A specification of a compiler consists of

• A specification of its source and target languages
• A specification of a mapping between them

4

5 The Task of an Interpreter

• The task of an interpreter is to map programs written in a given
source language into an internal representation and then to execute
the internal representation.
• Some languages (LISP, SCHEME, BASIC, Smalltalk, PROLOG) are

mostly interpreted.
• Some languages (Java, Pascal, PROLOG) are compiled into abstract

machine code, which is then interpreted by a virtual machine.
• Advantage of compilation:

• execution speed
• Advantage of interpretation:

• quick turn-around
• portability

5

6 Compiler-Structure

Lexical analysis ⇒Token sequence

Syntax analysis ⇒Structure tree

Semantic analysis ⇒Attributed structure tree

Intermediate code generation ⇒Intermediate code sequence

Optimization ⇒Intermediate code sequence

Target code generation ⇒Target code sequence

• Phases are not necessarily executed one after another.
• Intermediate data structures do not always exist in their entirety at

any one time.
• In the case of an interpreter, interpretation can happen on the

attributed syntax tree or on the intermediate code. For simple
languages somtimes even during parsing instead of building a tree.

6

7 Languages

• Formally, a language is a set of flat strings (sentences)
• In practice, each string in a language has a structure which can be

described by a tree.
• Structure rules for sentences are defined by a grammar
• Example:

• The sentences of a programming language are (legal) programs.
• Programs are sentences of tokens (words). The structure of a

program is given by a context-free grammar.
• Words themselves are sequences of characters, the structure of

words can also be given by a grammar.

7

8 Language and Grammars

• A language has structure which is determined by a grammar.
• Example: A correct sentence consists of a subject, followed by a verb
• This can be expressed by the grammar

Sentence = Subject Verb.

• Let’s complete this with two more productions:
Subject = ”Peter” | ”Chelsea”.

Verb = ”runs” | ”stops”.

• Then this defines 4 possible sentences:
Peter runs | Peter stops | Chelsea runs | Chelsea stops

• Usually languages contain an infinite number of sentences.

Q: Write a grammar for integer numbers!

8

9 Language and Grammars (2)

• An infinite number of sentences can be expresses by a finite number of
productions by using recursion over some symbols.
• Example:

Number = Digit | Digit Number.

Digit = ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” | ”9”.

• allows
0 | 12 | 347 | 0013 | ...

9

10 Context-free Grammars

A context-free grammar is formally defined by

• A set of terminal symbols (”0”, ”7”, ”Chelsea”)
• A set of non-terminal symbols (Subject)
• A set of syntactic rules (or: productions) (Subject=”Chelsea”|”Peter”.)

• A start symbol (Sentence)

A grammar defines as its language the set of those sequences of terminal
symbols which can be derived from the start symbol by successive
application of productions.

Q: What are all the terminals, non-terminals, rules, start-symbols of the
number example?

10

11 BNF (Backus-Naur Form)

This was originally developed by J.Backus and P.Naur for Algol 60.

• a production (or rule) consists of a left-hand-side and a
right-hand-side.
• The left-hand-side is a single non-terminal.
• The right-hand-side contains terminals and non-terminals, we use

• We use | for alternatives.
• We use juxtaposition for concatenation.
• concatenation binds stronger than |.

• We often use quotes for terminals.
• We will usually distinguish terminals which are not quoted and

non-terminals by capitalization.

11

12 EBNF (Extended BNF)

• We use (...) for grouping.
• We use ε for the empty word.
• We use [E] to stand for (ε | E)

• We use { E } to stand for (ε | E | EE | EEE | ...)

We can now write
Number = Digit { Digit }.
Digit = ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” | ”9”.

or
Sentence = (”Peter” | ”Chelsea”) (”runs” | ”stops”).

12

13 Two Level Description

• Context-free syntax of arithmetic expressions
Expression = Expression (minus | plus) Term | Term.
Term = Term (times | div) Factor | Factor.
Factor = numlit | lparen Expression rparen.

• Lexical syntax of arithmetic expressions
times = ”∗”.
div = ”/”.
plus = ”+”.
minus = ”–”.
lparen = ”(”.
rparen = ”)”.
numlit = digit { digit }.
digit = ”0” | ... | ”9”.

13

14 Two Level Description (2)

Why two levels

• White space, comments
• Structure
• We think that way (sentence, word, character).

For a practical specification we will use:

• Context-free Syntax
Expression = Expression (”–” | ”+”) Term | Term.
Term = Term (”∗” | ”/”) Factor | Factor.
Factor = numlit | ”(” Expression ”)”.

• Lexical Syntax
numlit = digit { digit }.
digit = ”0” | ... | ”9”.

But for the actual implementation we will use the first scheme.

14

15 Exercises

• How many terminals, non-terminals, productions, start-symbols does
the context-free Expression-grammar have?
• Give a grammar for floating point numbers of the form 123.45.
• Can you even extend it to a description which includes 12.4e17 and

0.23e–24.

15

	Part I: Compilation: Overview and Foundations
	Why study Compiler Construction?
	Why study Compiler Construction? (2)
	The Task of a Compiler
	The Task of an Interpreter
	Compiler-Structure
	Languages
	Language and Grammars
	Language and Grammars (2)
	Context-free Grammars
	BNF (Backus-Naur Form)
	EBNF (Extended BNF)
	Two Level Description
	Two Level Description (2)
	Exercises

