1. Minimisation des états d'AFD

Pour chaque AFD donné ci-dessous, trouver les classes d'équivalence et dessiner l'automate minimal respectif. (S désigne l'état initial et F désigne un état final)

	a	b			a	b
S1	1	4	SF	1	3	5
2	3	1	F	2	8	7
F3	4	2		3	7	2
F4	3	5	4	4	6	2
5	4	6	Į	5	1	8
6	6	3	(6	2	3
7	2	4	,	7	1	4
8	3	1	8	8	5	1

Conseil : Minimisez d'abord le premier automate, puis passez au deuxième exercice. Ensuite, si vous avez encore le temps, minimisez le second.

Corrigé:

1. On doit d'abord éliminer les états qui ne sont pas atteignables. Si on examine les transitions de l'automate, on voit que les états 7 et 8 ne sont jamais atteints. On peut donc déjà réduire l'automate en :

	a	b
S1	1	4
2	3	1
F3	4	2
F4	3	5
5	4	6
6	6	3

On peut maintenant appliquer l'algorithme de minimisation :

On marque tous les couples d'états qui ont un état final et un autre non-final.

On regarde les transitions possibles depuis les couples qui ne sont pas encore marqués. On met en évidence les états déjà marqués.

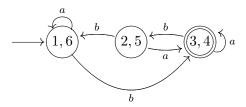
input a:
$$\{1,2\} \rightarrow \{1,3\} \ \sqrt{}$$
 input a: $\{1,5\} \rightarrow \{1,4\} \ \sqrt{}$ input a: $\{2,6\} \rightarrow \{3,6\} \ \sqrt{}$ input a: $\{5,6\} \rightarrow \{4,6\} \ \sqrt{}$ input a: $\{1,6\} \rightarrow \{1,6\}$ input b: $\{1,6\} \rightarrow \{4,3\}$ input a: $\{3,4\} \rightarrow \{4,3\}$ input b: $\{3,4\} \rightarrow \{2,5\}$ input a: $\{2,5\} \rightarrow \{3,4\}$ input b: $\{2,5\} \rightarrow \{1,6\}$

Après la première étape on peut marquer quatre autres états :

On examine les transitions possibles depuis les états qui n'ont pas encore été marqués. On voit clairement que chaque transition amène dans un autre état qui n'est pas marqué. On a trouvé les classes d'équivalences :

$$1 \approx 6$$
 $2 \approx 5$ $3 \approx 4$

Et l'automate minimal est :



2. Si on examine les transitions de l'automate, on voit qu'il n'y a pas d'états qui ne sont pas atteignables. Dès lors, on peut appliquer directement l'algorithme de minimisation :

On marque toutes les couples d'états qui ont un état final et un autre non-final.

On regarde les transitions possibles depuis les couples qui ne sont pas encore marqués. On met en évidence les états déjà marqués.

```
input b:
                                {3, 2}
               \{6, 3\}
input b:
               \{7, 3\}
                                \{4, 2\}
input b:
               \{4, 5\}
                              \{2, 8\}
input b:
               \{4, 6\}
                         \rightarrow {2, 3}
input b:
                              \{2, 4\}
               \{4, 7\}
input a:
               {5, 8}
                         \rightarrow {1, 5}
input a:
               \{5, 3\}
                         \rightarrow {1, 7}
               \{7, 8\}
input a:
                         \rightarrow {1, 5}
input a:
               \{6, 8\}
                         \rightarrow {2, 5}
input a:
               \{3, 4\}
                         \rightarrow {7, 6}
                         \rightarrow {2, 2}
input b:
               \{3, 4\}
               \{3, 8\}
                         \rightarrow {7, 5}
input a:
input b:
               \{3, 8\}
                         \rightarrow {2, 1}
               \{5, 7\}
                         \rightarrow {1, 1}
input a:
input b:
               \{5, 7\}
                         \rightarrow {8, 4}
input a:
               \{1, 2\}
                         \rightarrow {3, 8}
input b:
               \{1, 2\}
                         \rightarrow {5, 7}
input a:
               \{4, 8\}
                         \rightarrow {6, 5}
input b:
               \{4, 8\}
                        \rightarrow {2, 1}
input a:
               \{5, 6\}
                       \rightarrow {1, 2}
input b:
               \{5, 6\}
                         \rightarrow {8, 3}
input a:
               \{7, 6\}
                         \rightarrow {1, 2}
input b: {7, 6}
                              \{4, 3\}
```

Après la première étape on peut marquer neuf autres états :

On examine les transitions possibles à partir des états qui ne sont pas encore marqués. On voit clairement que chaque transition mène dans un autre état qui n'est pas marqué. On a trouvé les classes d'équivalences :

$$3 \approx 4$$
 $3 \approx 8$ $5 \approx 7$ $1 \approx 2$ $4 \approx 8$ $5 \approx 6$ $7 \approx 6$

Qui peuvent être réduites à :

$$1 \approx 2$$
 $3 \approx 4 \approx 8$ $5 \approx 6 \approx 7$

Et l'automate minimal est :



2. Preuve de l'algorithme de minimisation

Démontrez que les relations \approx et \approx_m vue au cours coïncident, c'est à dire que $p \approx_m q \Leftrightarrow p \approx q$.

Aide : $p \approx_m q \Leftrightarrow p \approx q$ est équivalent à $\neg (p \approx_m q) \Leftrightarrow \neg (p \approx q)$.

Démontrez l'implication de gauche à droite $(\neg(p \approx_m q) \Rightarrow \neg(p \approx q))$ par induction sur les règles¹ définissant $\sqrt{}$.

Montrer l'implication de droite à gauche ($\neg(p \approx q) \Rightarrow \neg(p \approx_m q)$) revient en fait à démontrer la proposition suivante :

pour tout $n \in \mathbb{N}$: s'il existe x tel que |x| = n, $\hat{\delta}(p, x) \in F$ et $\hat{\delta}(q, x) \notin F$ alors $\{p, q\} \in \sqrt{.}$

Corrigé:

Les pas de l'algorithme peuvent être exprimés par les deux règles suivantes (cf. transparent 14, leçon 8) qui décrivent l'ensemble des pairs marquées ($\sqrt{}$). Bien entendu, l'application des règles continue seulement jusqu'à ce que il introduit des nouveaux pairs dans l'ensemble $\sqrt{}$.

(Init)
$$\frac{p \in F \quad q \notin F}{\{p,q\} \in \sqrt{}}$$

(STEP)
$$\frac{a \in \Sigma \quad \delta(p,a) = p' \quad \delta(q,a) = q' \quad \{p',q'\} \in \sqrt{}}{\{p,q\} \in \sqrt{}}$$

Les pairs $\{p,q\}$ ne sont pas ordonnée, donc on a pas besoin de donner des règles symétriques.

On vous rappelle que:

$$\begin{array}{ccc} P \Leftrightarrow Q & ssi & (P \Rightarrow Q) \land (Q \Rightarrow P) \\ & ssi & (\neg P \lor Q) \land (\neg Q \lor P) \end{array}$$

$$\neg (P \Leftrightarrow Q) \quad ssi \quad \neg ((\neg P \lor Q) \land (\neg Q \lor P))$$
$$ssi \quad (\neg (\neg P \lor Q)) \lor (\neg (\neg Q \lor P))$$
$$ssi \quad (P \land \neg Q) \lor (Q \land \neg P)$$

¹Vue à la leçon 2, p. 19

On note que:

$$\begin{split} \neg \left(p \approx q \right) \quad ssi \quad \neg \left((\forall x \in \Sigma^*) \left(\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F \right) \right) \\ \quad ssi \quad (\exists x \in \Sigma^*) \left(\neg \left(\hat{\delta}(p, x) \in F \Leftrightarrow \hat{\delta}(q, x) \in F \right) \right) \\ \quad ssi \quad (\exists x \in \Sigma^*) \left(\left(\hat{\delta}(p, x) \in F \wedge \hat{\delta}(q, x) \notin F \right) \vee \left(\hat{\delta}(p, x) \notin F \wedge \hat{\delta}(q, x) \in F \right) \right) \end{split}$$

 \Rightarrow

On démontre la proposition suivante par induction sur les règles (cf. transparent 19, lecon 2).

Pour tous $\{p,q\}$, si $\{p,q\} \in \sqrt{\text{alors il existe } x \in \Sigma^* \text{ tel que } \hat{\delta}(p,x) \in F \text{ et } \hat{\delta}(q,x) \notin F \text{ (ou vice-versa)}.$

Pour tous $\{p,q\}$, $\{p,q\} \in \sqrt{\text{ signifie que soit }} p \in F \quad q \notin F \text{ (cas de base, application de la règle (INIT)) ou il existe un } a \in \Sigma \text{ tel que } \delta(p,a) = p' \quad \delta(q,a) = q' \text{ et } \{p',q'\} \in \sqrt{\text{ (hypothèse d'induction, application de la règle (STEP)).}}$

Cas (INIT)

Dans ce cas, $\{p,q\} \in \sqrt{\text{ signifie que } p \in F \text{ et } q \notin F \text{ , (ou vice-versa) dès lors, nous avons :}$

$$p = \hat{\delta}(p, \epsilon) \in F$$
$$q = \hat{\delta}(q, \epsilon) \notin F$$

Il existe donc un $x \in \Sigma^*$ (dans ce cas ϵ) tel que $\hat{\delta}(p,x) \in F$ et $\hat{\delta}(q,x) \notin F$ et on peut conclure que $p \not\approx q$.

Cas (STEP)

Dans ce cas, $\{p,q\} \in \sqrt{\text{ signifie qu'il y a } a \in \Sigma \text{ tel que } \delta(p,a) = p' \text{ et } \delta(q,a) = q' \text{ et } \{p',q'\} \in \sqrt{\text{. Et, par l'hypothèse d'induction sur } \{p,q\}, \text{ nous savons que : }$

il existe
$$x' \in \Sigma^*$$
 tel que $\hat{\delta}(p',x') \in F$ et $\hat{\delta}(q',x') \notin F$ ou vice-versa

Prenons $x \in \Sigma^*$ tel que x = ax', nous avons :

$$\begin{array}{rcl} \hat{\delta}(p,x) & = & \hat{\delta}(p,ax') \\ & = & \hat{\delta}\left(\delta(p,a),x'\right) \\ & = & \hat{\delta}\left(p',x'\right) \in F \end{array}$$

et

$$\begin{array}{rcl} \hat{\delta}(q,x) & = & \hat{\delta}(q,ax') \\ & = & \hat{\delta}\left(\delta(q,a),x'\right) \\ & = & \hat{\delta}\left(q',x'\right) \notin F \end{array}$$

(Le cas du vice-versa est symétrique)

Il existe donc un $x \in \Sigma^*$ (dans ce cas x = ax') tel que $\hat{\delta}(p, x) \in F$ et $\hat{\delta}(q, x) \notin F$ (ou vice-versa) et on peut conclure que $p \not\approx q$.

Vu que le cas de bas et le cas d'induction sont vérifié, on peut terminer en disant que l'implication \Rightarrow est vraie.

On doit démontrer que,

pour tout $n \in \mathbb{N}$: s'il existe x tel que |x| = n, $\hat{\delta}(p, x) \in F$ et $\hat{\delta}(q, x) \notin F$ alors $\{p, q\} \in \sqrt{n}$. Nous démontrons ça par induction naturelle sur la longueur de le mot x

Cas de Base

La longueur de x est zéro, à savoir $x = \epsilon$. Alors :

$$\hat{\delta}(p,\epsilon) = p \in F$$

$$\hat{\delta}(q,\epsilon) = q \notin F$$

(ou vice-versa)

Donc, par application de la règle (INIT), le pair $\{p,q\}$ est marqué dans l'algorithme, à savoir $\{p,q\} \in \sqrt{.}$

Cas d'Induction

La longueur de x est n+1. On a comme hypothèse d'induction que, pour tout pair $\{p',q'\}$, s'il existe un mot de longueur n $x' \in \Sigma^*$ tel que $\hat{\delta}(p',x') \in F$ et $\hat{\delta}(q',x') \notin F$ alors $\{p',q'\}$ est marqué dans l'algorithme, à savoir $\{p',q'\} \in \sqrt{}$.

Alors, on peut décomposer x comme la concaténation de $a \in \Sigma$ et $x' \in \Sigma^*$, de longueur respectivement 1 et n, à savoir x = ax'.

Pour tout pair $\{p,q\}$, s'il existe un mot de longueur n+1 $x\in \Sigma^*$ tel que $\hat{\delta}(p,x)\in F$ et $\hat{\delta}(q,x)\notin F$ (ou vice-versa) on peut toujours écrire x comme x=ax' et décomposer $\hat{\delta}(p,x)\in F$ dans $\hat{\delta}\left(\delta(p,a),x'\right)\in F$ et $\hat{\delta}(q,x)\notin F$ dans $\hat{\delta}\left(\delta(q,a),x'\right)\notin F$ (ou vice-versa). Si on pose $\delta(p,a)=p'$ et $\delta(q,a)=q'$ on voit que $\hat{\delta}(p',x')\in F$ et $\hat{\delta}(q',x')\notin F$. Alors, par l'hypothèse d'induction, $\{p',q'\}\in \mathcal{N}$.

On a que il existe un $a \in \Sigma$ tel que $\delta(p,a) = p'$ et $\delta(q,a) = q'$ et $\{p',q'\} \in \sqrt{}$, donc, par application de la règle (STEP), le pair $\{p,q\}$ est marqué dans l'algorithme, à savoir $\{p,q\} \in \sqrt{}$.