1. Langages non réguliers

- 1. Montrez que ces langages ne sont pas réguliers.
 - (a) $\{w \in \{0,1\}^* \mid \#0(w) = \#1(w)\}$
 - (b) Un *palindrome* est une chaîne sur un alphabet Σ que l'on peut lire de manière identique dans un sens ou dans l'autre¹.

$$w$$
 palindrome $\Leftrightarrow w = a_1 \cdot \ldots \cdot a_n$ avec $a_i \in \Sigma$ et $\forall i \in \{1, \ldots, n\} : a_i = a_{n-(i-1)}$

Le langage $\{w \in \{a,b\}^* \mid w \text{ palindrome}\}$ n'est pas régulier.

(c) Une chaîne w dont les parenthèses sont *équilibrées*, noté w équilibré, satisfait la propriété suivante.

$$w$$
 équilibré $\Leftrightarrow \#((w) = \#)(w)$ et $\forall w'$ si $w' \ll_p w$ alors $\#((w') \geq \#)(w')$

Par exemple, les parenthèses des chaînes « (a()(((a)))a) » et « a()() » sont équilibrées mais celle de « (a(())) » et «)()() » ne le sont pas.

Le langage $\{w \in \{(,),a\}^* \mid w \text{ équilibré}\}$ n'est pas régulier.

2. L'ensemble des programmes JAVA syntaxiquement corrects est-il régulier ? Donnez un argument informel pour motiver votre réponse.

2. Langages réguliers finis et infinis

Un langage est *fini* s'il contient un nombre fini de chaînes. Il est *infini* dans le cas contraire. L'algorithme suivant permet de décider la finitude d'un langage régulier L sur un alphabet Σ . L'algorithme *accepte* un langage régulier L si et seulement si il est fini.

- 1. Trouver un nombre n satisfaisant la condition du lemme de gonflement pour L (le plus petit par exemple).
- 2. Si pour tout $w \in \{w \in \Sigma^* \mid n \le |w| \le 2n-1\}$, $w \notin L$ alors L est accepté. Sinon L est rejeté.

Démontrez la validité de l'algorithme. C'est à dire démontrez que pour tout langage régulier L, L est accepté si et seulement si L est fini.

3. Langages finis et langages réguliers

Démontrez le théorème suivant.

Théorème 3.1 Tous les langages finis sont réguliers.

¹« Ésope reste élu par cette crapule et se repose » est un palindrome modulo les accents et les espaces. Un grand palindrome écrit en français (environ 1500 mots) a été publié par Georges Perec sous le titre 9691 dans Oulipo, *La littérature potentielle*, Gallimard 1973 (seconde édition Folio, 1988).