Regular Expression Types for XML

Haruo Hosoya

Jéréme Vouillon

Benjamin C. Pierce

Department of Computer and Information Science
University of Pennsylvania

{hahosoya,vouillon,bcpierce}@saul.cis.upenn.edu

ABSTRACT

We propose regular erpression types as a foundation for
XML processing languages. Regular expression types are
a natural generalization of Document Type Definitions
(DTDs), describing structures in XML documents using reg-
ular expression operators (i.e., ¥, ?, |, etc.) and supporting
a simple but powerful notion of subtyping.

The decision problem for the subtype relation is
EXPTIME-hard, but it can be checked quite efficiently in
many cases of practical interest. The subtyping algorithm
developed here is a variant of Aiken and Murphy’s set-
inclusion constraint solver, to which are added several op-
timizations and two new properties: (1) our algorithm is
provably complete, and (2) it allows a useful “subtagging”
relation between nodes with different labels in XML trees.

1. INTRODUCTION

The recent rush to adopt XML is due in part to the hope
that the static typing provided by DTDs [22] (or more so-
phisticated mechanisms such as XML-Schema [23]) will im-
prove the safety of data exchange and processing. However,
although XML documents can be checked for conformance
with DTDs, current XML processing languages offer no way
of verifying that programs operating on these documents will
always produce conforming outputs.

In this paper, we propose regular erpression types as a
foundation for statically typed processing of XML docu-
ments. Regular expression types are a natural generaliza-
tion of DTDs, describing, as DTDs do, structures in XML
documents using regular expression operators (i.e., *, 7, |,
etc.). Moreover, regular expression types support a simple
but powerful notion of subtyping.

We have used regular expression types in the design of
a domain-specific language called XDuce (“transduce”) for
XML processing [15, 14]. In the present paper, though,
our focus is on the structure of the types themselves, their
role in describing transformations on XML documents, and
the algorithmic problems they pose. Interested readers are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

invited to visit the XDuce home page
http://www.cis.upenn.edu/ hahosoya/xduce.html

for more information on the language as a whole.
As a simple example of regular expression types, consider
the following set of definitions

type Addrbook = addrbook[Personx]
type Person = person[Name,Addr,Tel?]
type Name = name[String]

type Addr = addr[String]

type Tel = tel[String]

corresponding to the following DTD:

<!ELEMENT addrbook person*>
<!ELEMENT person (name,addr,tel?)>
<!ELEMENT name #PCDATA>

<!ELEMENT addr #PCDATA>

<!ELEMENT tel #PCDATA>

In our syntax, type constructors of the form labell...]
classify mnodes (“elements” in XML jargon) with
the label label, ie., XML structures of the form
<label>...</label>. Types may also involve the regular
expression operators * (repetition) and ? (optionality),
as well as | (alternation), which we’ll see examples of
later. Here, the type Addrbook describes a label addrbook
containing zero or more repetitions of nodes with label
person. Each person contains a sequence of nodes labeled
name, addr, and optionally tel, each of which contains a
String (called #PCDATA in the DTD syntax). An instance
of the type Addrbook is the following XML document:

<addrbook>

<person>
<name>Haruo Hosoya</name>
<addr>Tokyo</addr>

</person>

<person>
<name>Jerome Vouillon</name>
<addr>Paris</addr>
<tel>123-456-789</tel>

</person>

<person>

<name>Benjamin Pierce</name>
<addr>Philadelphia</addr>
</person>
</addrbook>

In general, a type denotes a set of documents. Our notion
of subtyping is simply inclusion between the sets denoted by
two types. The flexibility provided by this form of subtyping

turns out to be quite useful in programming. For example,
this definition allows the following subtyping:

Person* <: (person[Name,Addr]*,
person[Name,Addr,Tel],
Personx)

| person[Name,Addr]*

This subtyping gives a view of the type Person* as the union
of sequences that have at least one person with tel and
sequences that have no persons with tel. This inclusion
can be used to trivially check the exhaustiveness of a case
statement with two cases corresponding to the two clauses
of the right-hand type. Notice that if we interpreted the
Person* type as an ML-like type

{person: {name: String,
addr: String,
tel: String option}} list

the conventional subtyping of variant and record types
would not yield an inclusion like the one above. We give
further examples of the usefulness of this kind of flexible
subtyping in Section 2.

The main difficulty that we must face in programming
with regular expression types is that the decision problem for
subtyping is algorithmically difficult: types are essentially
tree automata [10] and thus the subtyping problem reduces
to deciding language inclusion for tree automata, which is
known to be EXPTIME-complete [20].!

We have developed an algorithm for subtype checking that
works quite efficiently on examples from the XML process-
ing domain. Our algorithm can be viewed as an adaptation
of Aiken and Murphy’s algorithm for set-inclusion constraint
solving [1], with two important extensions. First, our algo-
rithm is complete, as we prove in Section 4. While com-
pleteness is not critical in Aiken and Murphy’s context of
program analyses for optimization, it is crucial here for gen-
erating comprehensible error messages in case of typecheck-
ing failure. Second, we allow “subtagging” between labels,
supporting a useful object-oriented programming idiom.

We have incorporated a number of optimization tech-
niques in our implementation of the subtyping algorithm.
These range from standard techniques such as hash consing
to set-theoretic optimizations arising from our observations
of the actual uses of subtyping in XML processing. Our
algorithm runs at reasonable speed even on XDuce appli-
cations that involve quite large types, such as the complete
DTD for HTML documents.

The contributions of this paper can be summarized as
follows:

e We motivate the use of regular expression types, set-
inclusion-based subtyping, and subtagging for the do-
main of XML processing.

e We formalize the connection of regular expression
types to tree automata and develop a subtyping al-
gorithm, giving soundness, completeness, and termi-
nation proofs.

e We outline several optimizations specialized to the do-
main of XML processing and present preliminary mea-
surements of their practical effects.

!Strictly speaking, what is known is that our subtyping
problem without subtagging is EXPTIME-complete. We
conjecture that this is also the case with subtagging.

The paper is organized as follows. In the next section, we
give some examples of programming with regular expression
types. In Section 3, we give the connection of regular ex-
pression types to tree automata and the definition of subtyp-
ing. In Section 4, we present our subtyping algorithm and
prove its correctness. Section 5 describes our implementa-
tion techniques and Section 6 discusses some performance
measurements. We survey related work in Section 7 and
conclude in Section 8.

2. REGULAR EXPRESSION TYPES

We begin with a series of examples illustrating the appli-
cation of regular expression types and subtyping to XML
processing.

2.1 Values

Each type in our language denotes a set of sequences. Types
like String and tel[String] denote singleton sequences;
the type Tel* denotes sequences formed by repeating the
singleton sequence Tel any finite number of times. So each
element of the type person[Tel*] is a singleton sequence la-
beled with person, containing an arbitrary-length sequence
of Tels. If S and T are types, then the type S,T denotes all
the sequences formed by concatenating a sequence from S
and a sequence from T. The comma operator is associative:
the types (Name,Tel*),Addr and Name, (Tel#,Addr) have
exactly the same set of elements. As the “unit” element
for the comma operator, we have the empty sequence type,
written (). Thus, Name, () and () ,Name are equivalent to
Name.

2.2 Subtyping

The subtype relation between two types is simply inclusion
between the sets of sequences that they denote. (See Sec-
tion 3 for the formal definition.)

We now show the sequence of steps involved in verifying
that the XML document given in the introduction actually
has type Addrbook. First, from the intuition that ? means
“optional”, we expect the following relations:

Name, Addr <
Name,Addr,Tel <

Name,Addr,Tel?
Name,Addr,Tel?

Notice that each right hand side describes a larger set of
sequences than the left hand side. Similarly, * means “zero
or more,” so in particular it can be three:

T,T, T <t Tx*

Wrapping both sides of the first two relations with the la-
bel person and combining these with the third relation, we
obtain:

person[Name,Addr],
person[Name,Addr,Tell,
person[Name, Addr]

< (person[Name,Addr,Tel?])*.

Finally, enclosing both sides by addrbook constructor, we
obtain

addrbook [
person[Name,Addr],
person[Name,Addr,Tell,
person[Name,Addr]]
<: addrbook[(person[Name,Addr,Tel?])*]
= Addrbook.

Since the XML document given in the introduction trivially
has the type on the left hand side, it has also the type on
the right hand side.

2.3 Regular Expression Types as Derived
Forms

We have seen a rich variety of type constructors, but some
of them can actually be derived as combinations of a smaller
set of other constructors—concatenation, labeling, alterna-
tion, empty sequence, and recursive definition. For example,
the optional type T? can be rewritten as T| (), using an al-
ternation or union type and the empty sequence.

Other regular expression operators are also definable. T+,
standing for one or more repetitions of T, can be rewritten
as (T,T*). More interestingly, T* itself can also be derived
using recursion. That is, T# is equal to a variable X defined
by the following equation:

type X = T,X | O

(Note the similarity to the definition of 1ist as a datatype
in ML.)

2.4 Recursion

Yet more interesting types can be built using recursion to
express nesting of structures. Consider the following defini-
tions.

type Fld
type Recd

Redx*

name [String], folder[Fld]

name [String], url[String],
(good[] | broken[])

The mutually recursive types Fld (“folder”) and Red
(“record”) define a simple template for storing structured
lists of bookmarks, such as might be found in a web browser:
a folder is a list of records, while a record is either a named
folder or a named URL plus either a good or a bad tag in-
dicating whether or not the link is broken.

We can write another pair of types

type GoodFld = GoodRcd*
type GoodRcd = name[String], folder[GoodFld]
| name[String], url[String], good[]

which are identical to F1d and Rcd except that links are
all good. Intuitively, we expect that GoodFld should be a
subtype of F1d because GoodF1ld allows fewer possibilities
than F1d. Our type system validates this inclusion.

2.5 Subtagging

In XML processing, we sometimes encounter situations
where we have to handle a large number of labels and it
is convenient to organize them in a hierarchy, in the style
of object-oriented languages. This leads us to support a
notion of “subtagging” in our type system, allowing subtyp-
ing between types with different labels. This feature goes
beyond the expressive power of DTDs, but a similar mech-
anism called “equivalence classes” can be found in XML-
Schema (Section 3.5 in [23]—so called even though it does
not yield a symmetric relation between types).

The subtagging relation is a reflexive and transitive re-
lation on labels. We declare subtagging explicitly with a
set of global subtag forms. For example, the following de-
clares that the tags i (italic) and b (bold) are subtags of
fontstyle:

subtag i <! fontstyle
subtag b <: fontstyle

In the presence of these declarations, we have the subtyping
relations
il[T] <
b[T] <:

for all T. These relations allow us to collapse two case
branches for i and b into one case for fontstyle, when both
cases behave the same. This use of subtagging is similar to
the common technique in object-oriented programming of
defining an abstract class fontstyle with subclasses i and
b.

Subtagging is also useful for other purposes. In the XDuce
language, the special label ~ denotes “any label.” That is,
for every label 1, we have the following built-in subtagging
relation:

fontstyle[T]
fontstyle[T]

subtag 1 <

Thus, the type ~[T] describes any labeled structure whose
contents belong to type T. The label ~, in turn, can be used
to define a completely generic type Any as follows:

type Any = ("[Any]l | String | Int | Float)x*

That is, the values described by Any consist of zero or more
repetitions of arbitrary labels (containing Any) and base
types.

2.6 Pattern Matching

Regular expression types can enhance the pattern match-
ing mechanisms found in mainstream functional languages.
For example, in XDuce we can write the following pattern
match:
_:(person[Name,Addr]*),
x: (person[Name, Addr,Tel]),
_:(Personx)
— (* do some stuff x)
| y:(person[Name,Addr] *)
— (* do other stuff *)

A pattern of the form x:T matches any value of type T and
binds the variable x to this value. (Underscore is used as a
“don’t care” variable name, as in ML.) In this example, the
first case matches values containing at least one person with
tel. In this case, the variable x is bound to the first person
with a tel. The second case matches values containing no
person with tel.

Notice that the first pattern _:(person[Name,Addr]*)
in the first case matches a wariable length sequence—
something that is beyond the power of ML pattern match-
ing. This makes standard techniques for exhaustiveness
checking somewhat difficult to apply to such patterns.

However, we can use subtyping also for checking exhaus-
tiveness of pattern matches. We assume that the type for
the input value to the pattern match is available from the
context. (In XDuce, this is ensured by type annotations on
function headers.) In the example, suppose that the type of
the input value is Person*. In order to show exhaustiveness
of the pattern match with respect to this type, it is sufficient
to show that every value of type Person# is accepted by the
pattern. This leads to the following subtyping check

Person* <: (person[Name,Addr]*,
person[Name,Addr,Tel],
Personx)

| person([Name,Addr]*

where the right hand side is calculated by taking the union
of the types of the two pattern clauses.

2.7 Semistructured Data

One of the main application domains for XML is rep-
resenting and transmitting databases. Since this flexi-
ble representation allows for straightforward evolution of
database “schemas” and integration of databases with dif-
ferent schemas, it is often called a semistructured format
in the database community. This view is especially useful
for wrapper/mediator systems for the Web that integrate
multiple independent data sources, which may themselves
occasionally evolve. In this section, we present some dif-
ferent scenarios of database evolution and integration and
show how our regular expression types ensure static safety
in a flexible and robust way.

Suppose that we begin with the following XML database
A

<addrbook>
<person>
<name>Haruo Hosoya</name>
<addr>Tokyo</addr>
</person>
<person>
<name>Jerome Vouillon</name>
<addr>Paris</addr>
<tel>123-456-789</tel>
</person>
</addrbook>

with the type Addrbook defined as follows:

type Addrbook = addrbook[Personx]
type Person = person[Name,Addr,Tel?]

Now, suppose we upgrade this database so that some per-
son record can contain arbitrarily many tels. This process
involves changes to types, databases, and programs. We
change the types as follows:

type Person = person[Name,Addr,Telx*]

Notice that the new content type (Name,Addr,Tel#*) of
person is a supertype of the old type (Name,Addr,Tel?)
and therefore the type Addrbook of the whole database be-
comes bigger as well. This means that our database, which
had the old type, still conforms to the new type, without
the need of restructuring. After adding some tel fields to
our database, we arrive at the following database B:

<addrbook>

<person>
<name>Haruo Hosoya</name>
<addr>Tokyo</addr>
<tel>111-222-333</tel>

</person>

<person>
<name>Jerome Vouillon</name>
<addr>Paris</addr>

<tel>123-456-789</tel>

<tel>999-888-777</tel>
</person>
</addrbook>

At each step in this process, the type of the database is
Addrbook. The database can therefore smoothly evolve
while preserving the robustness provided by type safety.
Upgrading the programs that operate on our database can
be slightly trickier. Since the new type is a supertype of the

old type rather than a subtype, all functions that output
the old type can be treated as outputting the new type.
On the other hand, functions that input the old type have
to be modified so as to handle the additional cases. Some
programmers may be happy with this, since the type sys-
tem is helping in isolating the part of the program requiring
updates. Other programmers may feel that the types are
preventing “forward compatibility” of old programs. For ex-
ample, if we are interested in extracting specifically the Name
field, then our program should work for the new database
just as well as the old. But this sort of forward compatibil-
ity can easily be achieved, at the cost of writing the original
program in a slightly more refined way: we maintain the con-
vention that functions on persons should actually be able
to handle inputs of type (Name,Addr,Tel?,Any), simply ig-
noring the additional fields at the end. Now if, when the
database’s type is evolved, new fields are always added at
the end, these old programs will work and typecheck without
change.

XML also makes “database integration” easier than more
structured formats such as relational databases. Again, reg-
ular expression types help ensure the type safety of integra-
tion steps. For example, consider integrating the previous
database B with another database C with a slightly different
type from B’s:

type Addrbook2 = addrbook[Person2x]

type Person2 = person[Name,Addr,Emailx*]
type Email = email[String]

Data integration again involves changes to types,
databases, and programs. We integrate databases by con-
structing a tree whose root has the label addrbook and
whose content is the concatenation of the contents of the
two databases. The natural type of this merged database is:

type Addrbook = addrbook[Person*,Person2x*]

Suppose that we want to write a program to scan the whole
sequence and extract the names of all the persons. For writ-
ing such a program, the type of the database is rather incon-
venient, since it involves two occurrences of repetition, nat-
urally leading to two separate loops for scanning the whole
sequence. Obviously, it is better to roll these two loops into
one. To do this, we can use a subtype inclusion that forgets
the fact that that all the Persons come before the Person2s:

Person*,Person2* < (Person|Person2)*

Now, each element has either type Person or else type
Person2, leading naturally to one-loop scans. However, we
can do better: each step of the natural scan over this type
involves two very similar cases, both of which just extract
the Name field. We can use one more subtype inclusion (ac-
tually an equivalence, hence written =, using the fact that
alternation distributes over labels and concatenations) to
rewrite the type so that the common structure is exposed:

person[Name,Addr,Tel#*] |
person[Name,Addr ,Email#]
= person[(Name,Addr,Tel*) |
(Name ,Addr ,Email*)]
= person[Name,Addr, (Tel*|Email*)]

After all this rewriting, the type AddrBook is now expressed
in a form that leads naturally to scanning the Name fields
with a single compact loop:

addrbook[person[Name,Addr, (Tel*|Email*)]*]

These distributive laws illustrate the flexibility of regular
expression types, compared to the “tagged” sum types (as
found, for example, in ML and Haskell).

3. DEFINITIONS

We distinguish two forms of types: ezternal and internal.
The external form is one that the user actually reads and
writes; all the examples in the previous sections are in this
form. Internally, however, the subtyping algorithm uses a
simpler representation to streamline both the implementa-
tion and its accompanying correctness proofs. We first give
the syntax of each form. Next, we describe the translation
from the external form to the internal form. Then we give
the definition of subtyping in terms of the internal form.

3.1 External Form

We assume a countably infinite set of labels, ranged over by
1, and a countably infinite set of variables, ranged over by
X. Type expressions are then defined as follows.

T == QO empty sequence
X variable
1[T] label

T,T concatenation
TIT union

The bindings of type variables are given by a single, global
set E of type definitions of the following form.

type X =T

The body of each definition may mention any of the defined
variables (in particular, definitions may be recursive). We
sometimes regard E as a mapping from type variables to
their bodies. We write dom(E) for the set of defined vari-
ables.

Base types such as String and Int are actually treated as
special labels: String is an abbreviation for String[] and
Int for Int[]. (This means that, strictly speaking, values
of these types are also labels: for example, the elements
of Int[] include 1[1, 2[], etc., where 1 and 2 are built-in
sub-tags of Int.)

We assume a global subtagging relation, a reflexive and
transitive relation on labels, written <.

As we have defined them so far, types correspond to ar-
bitrary context-free grammars—for example, we can write
definitions like:

type X = Int,X,String | ()

Since the decision problem for inclusion between context
free languages is undecidable [13], we need to impose an
additional restriction to reduce the power of the system so
that types correspond to regular tree languages. Deciding
whether an arbitrary context-free grammar is regular is also
undecidable [13], so we adopt a simple syntactic condition,
called well-formedness, that ensures regularity. Intuitively,
well-formedness allows recursive uses of variables to occur
only in tail positions. For example, we allow the following
type definitions:

type X
type Y

Int,Y
String,X | ()

More precisely, we define well-formedness in terms of a
“right-linearity” judgment of the form o + T : 7i(X), where

o is a set of variables. It should be read “T is right-linear in
X, assuming that all bodies of variables in o are right-linear
in X.” This judgment uses an auxiliary “disconnectedness”
judgment of the form o F T : de(X), read “T is disconnected
from X (i.e., X does not occur in the top level of T), assum-
ing that all bodies of variables in ¢ are disconnected from
X.” These two judgments are defined by the following rules
(where X #Y):

ok T: ri(X) for T= () or 1[T] or X

ok Y:ri(X) ifYeo

ok Y:ri(X) ifY¢oand o U{Y} F E(Y) : rl(X)
oFTIU:7l(X) ifokT:7l(X)and ot U: rl(X)
oFT,U:7l(X) ifQFT:de(X)and ok U: rl(X)
ok T: de(X) for T= () or 1[T]

o b Y: de(X) ifYeo

ok Y: de(X) ifY¢ o and o U{Y} F E(Y) : de(X)

oFTIU:de(X) if ok T:de(X) and o - U : de(X)
oFT,U:de(X) ifo b T:de(X)and o b U: de(X)

The empty sequence, a label, and the variable X are right-
linear in X. For variables Y other than X, we recursively
check the right-linearity of the body of Y. To ensure ter-
mination, we keep track in o of variables that have already
been checked. For (T|U), both T and U should be right-linear
in X. For (T,U), we check if U is right-linear in X, while T
is disconnected from X. The disconnectedness judgment is
defined similarly, except for the first rule, in which X is not
disconnected from X. Now, the set of type definitions E is
said to be well-formed if

0+ E(X) : rl(X) for all X € dom(E)

3.2 Internal Form
Transitions or internal types are defined by the following:

A = e leaf transition
I(X,X) branch transition
AlA alternation

0 empty transition

FV(A) is the set of states appearing in A. A tree automaton
or contezt is a finite mapping A from states X; to transitions
A;. Any state occurring in the transitions in the context
must be one of its states: FV(A(X)) C dom(A) for X €
dom(A).

The semantics of internal types are defined in terms of
ground types, which are defined by the following grammar:

t = € leaf
I(t,t) branch

Intuitively, e corresponds to the empty sequence; I(t,t') cor-
responds to a sequence whose head is a label 1[T] where
t corresponds to T and t' corresponds to the remainder of
the sequence. Ground types can be seen as abstractions of
sets of concrete values. That is, each concrete value “di-
rectly” belongs to a ground type with the same structure.
For example, the value

<name>Haruo</name> <addr>Tokyo</addr>
has external type
name [String[]1], addr[String[]]
from which we can read off the ground type:

name (String(e,e), addr(String(e,e), €)).

A transition denotes a set of ground types. The deno-
tation function [A], is defined as the least solution of the
following set of equations:

[ela = {e}
XXy = e U <IN te[AX)]A
t' € [AX)]A}
I[AlA’]IA = |IA]IAU|IAI]]A
L= 0

These rules are straightforward except that a branch tran-
sition /(X, X') denotes not only branch ground types with
label I but also all labels !’ smaller than [in the sense of
subtagging. (Viewed another way, the denotation function
defines the set of trees accepted by a tree automaton.)

For later use in the subtyping algorithm, we define the
structural equivalence = between transitions as the smallest
relation containing the following:

Alp = A
AlA = A
(AlB)|C = A|(B|C)
A|B = B|A
A|B = A|C ifB=C

These rules essentially treat a type as a set of (leaf or branch)
transitions. We can easily prove that [A], = [B], when-
ever A= B.

In the remainder of the paper, we assume that a single
context A is given once and for all and shared among all
types. Therefore we simply write [A] to mean [A],. In
examples and informal explanations, we sometimes identify
a state and its associated transition. For instance, we write
I(B,C) for I(X,Y) where B= A(X) and C = A(Y).

3.3 Translation

Given an external type To, translation constructs a pair of
an internal type and a context. The context associates each
state X with an internal type corresponding to some external
type T. For ease of formulation, we write such states as Xr.

At each step, we compute an internal type corresponding
to an external type using the function ¢s defined below.

ts(O)p = ¢
tS(l [T])p = l(XT,X())
ts(X)p = 0 Xep
ts@p = ts(BX)(pU{X}) X¢p
ts(T1Ta)p = ts(T1)p | ts(T2)p
ts(0,T)p = ts(T)p
ts(LIT11,T2)p = 1(Xt,, X1,)
ts(X,T)p = 0 (X, T)ep
s(X.T)p = ts(BX).T)(p U{(X.T)})
X.T)ép
tS((Tl,Tg),T;;)p = ’tS(Tl,(Tz,T3))p
tS((T1|T2),T3)p = ts(Tl,Tz)p | tS(Tl,Tg)p

This function collects all labels appearing at the head of a se-
quence and turns them into branch transitions whose “car”
state corresponds to the content type of the label and whose
“cdr” state corresponds to the remainder of the sequence.
These branch transitions contain states X, for which the
associated external type T will be the target of translation
in the next step. The function ts also collects the leaf tran-
sition if the given type contains the empty sequence. We
keep track of which types we have already seen, in the set

p of types. When we encounter the same type for the sec-
ond time, the result is the empty set. For example, sup-
pose we have the type definition type X = X and we want
to translate (X,Int). The corresponding internal type is
ts(X,Int)D = ¢s(X,Int){(X,Int) } = @), which is reasonable
since both X and therefore (X,Int) denote the empty set
(because we are interested in the least solution of recursive
type definitions). In the rule before the last, we turn a left
associative concatenation to right associative, thus eventu-
ally revealing the head of a sequence.

The whole translation procedure takes as input an exter-
nal type To and returns an internal type Ao and a context
A. Initially, A is set to the empty context, and we start
with computing the internal type Ao for the external type
To: Ao = ts(To)l. Some branch transitions in the result
may contain states that are not yet in A. For such a state
X1, we compute its internal type Ax; = ts(T)0 and add the
mapping Xt — Ax; to A. We repeat this process until all
transitions in A¢ and A contain states that are in A.

The intuition behind the termination of translation is that
all external types encountered by the process (i.e., given
to the function ts) have the form of a sequence T1,..,T,
where each T; appears in a different place in the original type
definitions; the set of such sequences is finite. A more formal
discussion of this point can be found in the accompanying
technical report [16].

3.4 Subtyping

The subtyping relation between two types is defined seman-
tically: two internal types are in the subtype relation iff their
denotations are in the subset relation:

A< A iff [A] C[A].

4. SUBTYPING ALGORITHM

This section develops an algorithm for deciding the subtyp-
ing relation.

4.1 Highlights

Our algorithm is a top-down one similar in spirit to standard
subtyping algorithms. We start with a pair of types, and, at
each step, we generate one or more subgoals until we reach
leaf goals involving only trivial checks.

The main difficulty of constructing such a top-down algo-
rithm arises from the “untaggedness” of union types. Specif-
ically, the most interesting case is when we have union types
on the right-hand side:

I(A,B) < UC,D) | UE,F)

What subgoals should we generate? The first rule we might
try is the following:

(WEAK-REC)

I(A,B)<: I(C,D) or (A B)<I(E,F)

I(A,B) < I(C, D) | I(E,F)

However, this rule is too weak. For example, for checking
I((C| E),D) < I(C,D) | I(E,D), neither premise holds.
A more realistic example is the subtyping relation given in
Section 2.6:

Person* <: (person[Name,Addr]*,
person[Name,Addr,Tel],
Personx)

| person([Name,Addr]*

Aiken and Murphy [1] actually adopt a rule similar to
WEAK-REC and argue that they rarely see cases where this
rule is not enough. In our setting, however, such cases do
arise in practice.

Another rule we might expect to see is one that dis-
tributes all unions over labels. For example, to verify
I((C | E),D) < I(C,D) | l(E, D), we could transform the
left-hand side to I(C, D) | I(E, D) and check whether each
clause on the left appears on the right. However, this ap-
proach does not work for recursive types, where we would
apply distributivity infinitely.

Fortunately, a simple set-theoretic observation leads to a
solution to this difficulty. Let us consider a slightly more
general case:

1(A,B) < I(Ci,D1) | UC2,D2) | U(Cs,Ds)

First, in general, a cross product X x Y is equal to (X x
T)N (T x Y) where the maximal type 7 denotes the set
of all ground types. Therefore the right-hand side of the
subtyping relation can be rewritten as follows.

(I(Cy, T)NI(T, D1))
| (U(C>, T)NIU(T, D2))
| (G, T)NUT, D))

Using distributivity of intersections over unions, we can turn
this disjunctive form to the following conjunctive form.

(U(C1, T) | U(C2,T) | 1(Cs, T)) N
(U(T,D1) [U(C2, T) | UCs,T)) N
(UC1, T) | T, D2) | C5,T)) N
(T, D1) | (T, D2) | (Cs,T)) N
(U(C1, T) | U(C2,T) | U(T,D3)) N ...

In each clause of the conjunctive form, if C; appears, then
the corresponding argument D; does not appear, and vice
versa. Therefore each clause can be rewritten as

(lier UCs, T)) | (liex UT, Ds))

where I is a subset of {1,2,3} and T is {1,2,3} \ I. Since
the conjunctive form above is the intersection of such forms
for all subsets I of {1,2,3}, the subtyping relation reduces
to checking, for each I,

WA B) < (lier UCH,T)) | (lier AT, Dy))
or equivalently,
I(A,B) < Uier Ci,T) | UT, |i67 D).

Write C for |ie; C; and D for |;c7 D;.

Now, since each clause on the right has type 7 as one of its
arguments, the situation becomes easier than the beginning:
it suffices to test

A< C or B< D.

To see why, suppose [(A,B) < I(C,T) | (T,D)but A¢ C
and B ¢ D. We can find trees t € A\C and u € B\ D. This
means that I(t,u) € I(A, B) but neither I(t,u) € I(C,T) or
I(t,u) € I(T, D), which contradicts the assumption.

This discussion can be further generalized to cases where
the subtype relation to check has arbitrary number of clauses
on the right-hand side.

There are two sources of computational inefficiency here.
One is the exponential blow-up involved in considering all
the subsets I of {1,...,n}. The other is the backtrack-
ing incurred by checking whether one or the other of the

two conditions above holds. Many of the optimizations de-
scribed in Section 5.2 are intended to avoid dealing with
these general cases, whenever possible.

4.2 Algorithm

The subtyping algorithm is defined by two forms of judg-
ment T A< B=T andTH* A< B =T, where T is
a set of pairs of types of the form C < D, called “assump-
tions.” Both judgments should be read: “assuming that all
relations C <: D in T hold, the algorithm proves A <: B and
possibly returns additional pairs E <: F' in the output set
I’ that have been proved in this process.”

As in standard algorithms for subtyping recursive types,
we store the given pair of types at each step to the assump-
tion set. Later on if we encounter the same pair, we stop
going further, thus ensuring termination. We have to be
careful not to check the assumption set immediately after
storing the given pair, which would invalidly prove subtyp-
ing between any pair of types. This is why we have two
different judgments.

The accumulated assumptions are eventually returned as
the output set I, which is propagated as the input to other
subtype checks, avoiding repeated checks of the same pair.
Furthermore, it is reused not only in the process of a single
subtype checking but also all the way through the compila-
tion of the whole program, thus serving as a “cache” of all
verified subtype relations. (See [3, 6, 12] for further discus-
sion.)

We now present the rules for the subtyping algorithm. We
write (A <¢ B) €= T for set membership up to structural
equivalence: (A’ <: B') € T for some A’ = A and B’ = B.

(Hyp)
(A< B)e=T
'A< B=T
(Assum)
(A< B)g=T
'A< BF A< B=T'
F'FA< B=T1'

If the pair A <: B of input types is already in the set I" of as-
sumptions, we immediately succeed (rule Hyp). Otherwise,
we add the pair to this set (rule Assum). These two rules
ensure termination as well as avoidance of repeated checks
of the same pair. In AssuM, we switch from the judgment of
the fom ' A< B=T"toI'* A< B = I, preventing
the incorrect application of the rule Hyp immediately follow-
ing AssuM. We keep using the judgment ' H* A <: B = T
in the subsequence rules, and switch back to the judgment
I'F A< B=T'in the last rule REC below.

The remaining rules depend on the shapes of the input
types. The first three are simple:

(EmpPTY)

o< A=T
(Spu1T)
'*A< B=T' 'A< B=T1"
T A|A < B=T1"
(LEAF)
A=e| A
F'He< A=>T

If the left-hand side is the empty set, we simply return since
the relation clearly holds (rule EMPTY). If the left-hand side
can be split into the union of two sets A and A’, we gener-
ate two subgoals for these sets (rule SPLIT). The intuition
behind this rule is a set-theoretic property: AU A’ C B iff
A C B and A’ C B. (There may be many ways to split
the left-hand side into the union of two sets; the algorithm
chooses one of them, non-deterministically.) If the left-hand
side is a singleton set with a leaf transition, we check that the
right-hand side also contains a leaf transition (rule LEAF).
The algorithm can fail only at this rule.

In the remaining cases, the left-hand side has a single
branch transition. First, define card as follows:

card(A; | A2) = card(Ar) + card(As)
card(A) =1 if A=eor I(X,X') or §
Now:
(PRUNE)
c=l'(B,B)|C card(C") < card(C)
LAV T I(AA) < C =T
THIAA)< CoT
(PRUNE-LEAF)
C=e|C card(C") < card(C)
T 1A, A< C' =T
T 1A A< C=>T
(REC)

Forall1<j<m,l <l

A=AX) A'=AX) By =A®Y;) B =A(Y))
For all 1 <4 < 2%, either

TiciFA< |jeI?BJ' =IT;or;—1F A < |].EFB; =TI

Ty H* l(X, X’) < ll(Yl,Yll) | .. | ln(Yn,Y,;) = I'on

The rules PRUNE and PRUNE-LEAF remove from the right
hand side a leaf transition € and all branch transitions with
labels I’ that are not greater than I. The side condition
card(C’) < card(C) ensures progress by guaranteeing that
the algorithm proceeds with smaller transitions.

The rule REC handles the other cases: the right-hand side
is the (possibly empty) union of types I;(Y;,Y;), with all
labels I; greater than the label {. This rule formalizes the
intuition explained in Section 4.1. We index the subsets of
{1,2,...,n} in some arbitrary order from I{ to I3.. We
write ﬁ for the complement of such a subset. For each
index i, we prove that either A is a subtype of the union

|;ernBj, or A’ is a subtype of the union |; 7=Bj.
In Figure 1, we show the proof tree for checking the sub-

typing relation X <: Y where the context is:

X el l(X ¢€)
Y €| U(Y,e€)

In the proof tree, we write I' for {X <: Y'}. Notice that when
X < Y is checked for the second time, HYP is used, thus
ensuring termination. Also, checking I' H* (X, ¢) < [(Y,¢€)
generates a complex form of premises, some of which fail,
incurring backtracking.

This algorithm is sound and complete.

4.2.1 Theorem [Soundness]: If ' - A < B = I' and
T is consistent (i.e., C < D for all (C <: D) €= I'), then
A< B and I is also consistent.

4.2.2 Theorem [Completeness]: If A <: B, then I' F
A< B =T for some I'.

The proofs of these theorems (and the termination property
below) are given in our accompanying technical report [16].

The termination of the algorithm can be seen as follows.
The process from EMPTY to PRUNE-LEAF obviously termi-
nates because the sizes of the types always decrease. In REC,
observe that X, X', Y1,...,Y,, Y{,... Y, are always some
states of the tree automata of the input types. Since the
set of states is finite, the set of unions of states, for which
REC generate subgoals, is also finite. AssuMP keeps track
of all such unions of states that the algorithm encounters,
and HYP ensures termination.

4.2.3 Theorem [Termination]: For all I, A, and B, the
algorithm either proves I' H A <¢ B = I" for some I" or
fails.

5. IMPLEMENTATION

Our implementation of subtyping consists of the set of rules
given in the previous section plus a number of optimiza-
tion techniques specialized to the subtyping problems that
arise in the XML domain. This section describes some of
these techniques. The techniques are categorized into low-
level, representational techniques and higher-level heuristics
inspired by set-theoretic observations. Our implementation
is written in O’Caml [17].

5.1 Low-level Optimizations

In order to make subtyping faster, it is crucial to minimize
the number of internal types translated from the external
types. Observing that semantically equal external types can
be translated to the same internal type, we exploit the prop-
erties of alternation and comma operators. Since alterna-
tion is commutative, associative, and idempotent, an alter-
nation of types is represented as a set of types. In addition,
nested alternations are flattened so that ((RI1S) | (T|U)) and
(UI(SI(TIR))) can be recognized as equal, for example.
Since the translation uses only union and equality opera-
tions on sets, a suitable representation is sorted lists, which
allows us to perform these two operations in linear time.
(We use a similar representation for internal types.) On the
other hand, since the comma operator is associative, a se-
quence of types is simply represented as a list of types, with
nested sequences flattened and the empty sequence removed
so that (((R,()),S),(T,U)) and (R, (S, (T,U))) can be rec-
ognized as equal. We also use hash consing to make equality
tests faster.

We need to be a little careful about the representation of
a set I of assumptions, described in Section 4. A hash table
might appear a suitable representation for this, but it is not
the case. Recall that in REC, we have the premises “A <: ...
or A’ <” For implementing this, when the first premise
fails, what we have to pass to the second premise is the orig-
inal set of assumptions, not what the first premise would
return as an “output set of assumptions,” which may con-
tain wrong assumptions. Therefore, if we used a hash table
for T, we would have to copy the whole hashtable every

fail

Hyp fail
_— S and
TFX<Y=T o TFe<0 LeAr _
'FX<0 or I'hke<iexsT
LEAF T'H*I(X,e) < I(Y,e) =T

FH*e<e|l(Y,e) =>T

FH U(X,e)< e|l(Y,e) =T

TH e|l(X,e)< e|l(Y,e) =T

FX<<Y=>T

Figure 1: Example proof tree

time before checking the first premise, which would be very
expensive. Instead, we use a functional representation of
sets, where the required operations here (unlike the unions
of types described above), are insertion and membership.
Therefore we use balanced binary trees. Operations for bal-
anced binary trees take logarithmic time in the size of the
set, as opposed to constant time for hash tables; but this
does not appear to cause any problems in practice.

5.2 High-level Optimizations

The rule REC is potentially costly as it may generate ex-
ponentially many subgoals and involve backtracking. Our
heuristic rules are mainly intended to avoid the application
of this rule as much as possible, or at least to simplify its
applications.

521 Physical equality

In an implementation of subtyping for any type system, the
most trivial optimization is checking physical equality before
going deeply in the structure. In the presence of union types,
this can be slightly generalized, using the fact that A <: A |
B. In our implementation, we use the following rule

(TR1v)
'B< A|C=>T
TFA|B< A|C=T

which can be seen as a combination of SPLIT and A <: A | B.
(We try this rule before Hyp.) Notice that this rule simply
takes the difference between two sets of transitions. Since a
type is represented as a sorted list, this operation is cheap.

5.2.2 Empty type elimination

In this optimization, we eliminate all types denoting the
empty set before starting the subtyping algorithm. Doing
so allows the algorithm to short-cut some tests later, since
it can assume that any type it encounters is not empty. In
particular, the algorithm now does not have to generate two
goals of the form A <: () at each application of the rule REC.
In such cases, it is fairly common that the right hand side
is just a single branch transition: I(A4, B) <: I'(C, D). When
this happens, we only need to check A < C and B < D
with I < I, which does not involve backtracking at all.

Empty type elimination can be highly tuned. In theory,
identifying and eliminating empty states can be performed
in linear time [10]. However, we use a simpler but potentially
quadratic algorithm, which perform better in practice. (We
refer to this optimization later by EMP.)

5.2.3 Merging similar transitions

In order to make the previous optimization more effective,
we merge transitions on the right hand side when either the
first or second arguments are the same:

(MERGEL)
TH I(A,B)< I'(C,(D|E)=T" 1<l
T 1(A,B) < I'(C,D) |I'(C,E) = T'

(MERGE2)
T I(A4,B)< I((C|D),E)=T 1<l
TF (A B)< [(C,E)|I(D,E) =T

(We try these rules before SINGLE.) In our experience, the
first case is more common than the second case. This is
because, in the external form of types, labels of the same
name often have the same content type. (If we “import”
DTDs as regular expression types, labels of the same name
are required to have the same content type.) Therefore we
check MERGE] first and then MERGE2.

5.2.4 Default case

Finally, if the type on the right hand side in REC has the
form B | Cy | ... | Cn and B is larger than any Cj;, then
we only need to compare the left hand side with this largest
type B:

(SUPER)

1<i1<n I Ci< B=Tip1
Fhpi A< B=>T1

F1|-*A<ZB|01|...|Cn:>F'

(We try this rule before REC after MERGE1/2.) This typi-
cally happens when the programmer writes a “default” case
in a pattern match, which is given a type (e.g. Any) that
covers all the other cases.

In principle, this optimization can generate so many sub-
goals in the course of searching for the largest type that the
cost surpasses the gain. However, we have not found such a
situation in practice so far. This is probably because most
of the cases are handled by the previous optimizations, and
because the alternative rule REC is often more expensive.

6. PERFORMANCE MEASUREMENT

‘We have incorporated the subtyping algorithm described in
the previous sections in a prototype implementation of the
XML processing language XDuce. XDuce is a simple first-
order functional language; a typical XDuce program consists

of lines time (sec) subtype alg. internals
Application XDuce | DTD || total | subtyping || states | assumptions
Bookmarks 310 1197 0.48 0.018 756 133
Diff 355 — 0.039 0.014 276 165
Heml2Latex 307 | 989 | 0.58 0.22 783 345
(strict)
Heml2Latex 312 | 1197 || 0.88 | 0.36 946 433
(transitional)
Heml2Latex 323 | 1226 || 087 | 034 975 454
(frameset)

Table 1: Applications

of a collection of type declarations and recursive functions
that use pattern matching to analyze input values. XDuce
can parse ordinary DTDs, interpreting them as as regular
expression type declarations. Some of our applications use
this feature to incorporate fairly large DTDs from real-world
XML applications.

In this section, we present the results of some preliminary
performance measurements of our implementation. In the
experiments, we are interested in the wall-clock time that
our algorithm takes to typecheck various application pro-
grams (subtype checks consume most of this time). The ac-
companying technical report shows additional experimental
results on the separate effects of each high-level optimization
[16]. The platform for our experiment is a Sun Enterprise
3000 (250MHz UltraSPARC) running SunOS 5.7.

Our test suite consists of three smallish (though non-
trivial) applications written in XDuce:

Bookmarks is a simple database query. It takes as input a
Netscape bookmarks file of type Bookmarks, which is
a subset of the (much larger) type HTML. It extracts a
particular folder named “Public,” formats it as a free-
standing document, adds a table of contents at the
front, and inserts links between the contents and the
body. The type of the result is the full HTML type.

Html2Latex takes an HTML file (of type HTML) and con-
verts it into LaTeX (a value of type String).

Diff implements Chawathe’s “tree diff” algorithm [8]. It
takes a pair of XML files of type Xml, which is the
type of all XML documents, and returns a tree with
annotations indicating whether each subtree has been
retained, inserted, deleted, or changed between the two
inputs.

The first two applications are written as straightforward
traversals of the input tree by several simple recursive func-
tions. The third one is more complex. Its first phase is a
dynamic programming algorithm, where regular expression
types are used for representing the internal data structures;
the second phase combines two input trees and inserts an-
notations at each node, using types to ensure that the an-
notations and the actual trees are never confused. In the
course of writing these applications, our type checker was a
tremendous help in finding silly mistakes.

The HTML type (more precisely, XHTML, which is an XML im-
plementation of HTML) is counsidered to be one of the largest
types for web documents. This makes it an excellent bench-
mark case for our implementation. There are actually three

and

Measurement Results

versions of XHTML: XHTML-strict, XHTML-transitional,
and XHTML-frameset; accordingly, our Html2Latex appli-
cation comes in three versions. The first is smallest and the
third is slightly larger than the second.

The first group of columns in Table 1 shows the number of
lines of XDuce in the whole program (counting types written
in XDuce syntax, but not external DTDs), and the number
of lines in external DTDs (if used). The difference between
the three versions of Html2Latex is mainly in the number of
lines of DTDs.

The column “total” in the table shows the total time spent
by the subtyping algorithm during the type checking of the
whole program. It includes conversion from the external
form to the internal form (INT), empty type elimination
(EMP), and the main subtyping algorithm (SUB), as de-
scribed in Section 4. The optimizations are all turned on for
this table. The column “subtyping” shows the time spent
by the main algorithm SUB.

As the table indicates, the speed of type checking is ac-
ceptable for these applications. In particular, it is quite
encouraging that it takes less than one second to type check
programs involving the full HTML type.

For reference, Table 1 gives two more columns: “states”
and “assumptions.” The “states” column indicates the num-
ber of states of the internal form stored in the system, and
the “assumps” indicates the number of pairs stored in the set
of assumptions. Notice that the number of assumptions is
much smaller than the number of states. (If we used a clas-
sical algorithm based on determinization of tree automata,
we would have to consider a far larger number of pairs of
states. In fact, in an early stage, we did implement such an
algorithm and it did not seem to be practical at all.)

7. RELATED WORK

Static typing of programs for XML processing has been ap-
proached from several different angles. One popular idea
is to embed a type system for XML in an existing typed
language. The advantage is that we can enjoy not only the
static type safety, but also all the other features provided by
the host language. The cost is that XML values and their
corresponding DTDs must somehow be “injected” into the
value and type space of the host language; this usually in-
volves adding more layers of tagging than were present in
the original XML documents, which inhibits subtyping. The
lack of subtyping (or availability of only restricted forms of
subtyping) is not a serious problem for simple traversal of
tree structures; it becomes a stumbling block, though, in
tasks like the “database integration” that we discussed in

Section 2.7, where ordering-forgetting subtyping and dis-
tributivity were critically needed.

A recent example of the embedding approach is Wallace
and Runciman’s proposal to use Haskell as a host language
[21] for XML processing. The only thing they add to Haskell
is a mapping from DTDs into Haskell datatypes. This allows
their programs to make use of other mechanisms standard
in functional programming languages, such as higher-order
functions, parametric polymorphism, and pattern matching.
However, they do not have any notion of subtyping. A dif-
ference in the other direction is that our type system does
not currently support higher-order functions or parametric
polymorphism. (We are working on both of these exten-
sions.)

Another piece of work along similar lines is the functional
language XM for XML processing, proposed by Meijer and
Shields [18]. Their type system is close to Haskell’s, except
that they incorporate so-called Glushkov automata in type
checking, resulting in a more flexible type system. How-
ever, neither their type system nor Glushkov automata are
described in detail in their paper, making comparison with
our work difficult.

A closer relative to our type system is the type system
for the query language YAT [9], which allows optional use
of types similar to DTDs. The notion of subtyping between
these types is somewhat weaker than ours (lacking, in par-
ticular, the distributivity laws used in our “database inte-
gration” example).

Types based on tree automata have also been proposed in
a more abstract study of typechecking for a general form of
“tree transformers” for XML by Milo, Suciu, and Vianu [19].
The types there are conceptually identical our regular ex-
pression types, (except for subtagging).

Regular expression types were originally motivated by an
observation by Buneman and Pierce [7] that untagged union
types corresponded naturally to forms of variation found in
semistructured databases. The difference from the present
paper is that they studied unordered record types instead of
ordered sequences and did not treat recursive types.

Our subtyping algorithm is closely related to the al-
gorithms for set-inclusion constraint solving developed by
Aiken and others [1, 2]; in particular, our algorithm is very
similar to the algorithm described in [1]. However, the goals
of the analyses are somewhat different: we are interested in
a type system for web programming, while they are inter-
ested in program analysis. This difference of domains has
at least two implications. First, since we have to clearly ex-
plain any type errors to the user, it is important to devise
a provably complete algorithm, while it is not so critical in
their context of program analysis for optimization, where
one can argue that incompleteness is tolerable if false an-
swers happen only rarely (as in some other type systems [5,
4]). However, as we have shown in Section 4.1, such cases
would arise in practice in our setting if we took Aiken and
Murphy's algorithm directly. Second, the difference of the
domain leads us to experiments with different inputs. Their
inputs are collected from analysis on a whole program and
can be huge. Tackling such a big job takes long to finish
(e.g., more than one minute for a program of a few thou-
sands of lines [11]). On the other hand, our inputs are types
that the user writes, which we can assume are not nearly
so large. In addition, since we want to use subtyping very
casually in our type checker, it must be very quick.

Another paper by Aiken and Wimmers [2] describes a
different decision procedure for set-constraint solving. Al-
though it gives a complete algorithm, the use of intersections
and negations appears rather critical in their algorithm; it
is not obvious exactly how an efficient algorithm could be
derived from it in the absence of these features.

8. CONCLUSIONS

‘We have proposed regular expression types for XML process-
ing, arguing that set-inclusion-based subtyping and subtag-
ging yield useful expressive power in this domain. We de-
veloped an algorithm for subtyping, giving soundness, com-
pleteness, and termination proofs. By incorporating several
optimization techniques, our algorithm runs at acceptable
speeds on several applications involving fairly large types,
such as the complete DTD for HTML documents.

Our work on type systems for XML processing has just
begun. In the future, we hope to incorporate other standard
features from functional programming, such as higher-order
functions and parametric polymorphism. The combination
of these features with regular expression types raises some
subtle issues. For function types, we have not found a sensi-
ble semantics of types that yields a complete algorithm. For
polymorphism, inference of type arguments at type applica-
tions is not obvious (there is no unique minimal solution in
general).

Acknowledgments

Our main collaborators in the XDuce project are Peter
Buneman and Phil Wadler. We have also learned a great
deal from discussions with Nils Klarlund and Volker Ren-
neberg, with the DB Group and the PL Club at Penn,
and with members of Professor Yonezawa’s group at Tokyo.
Comments from the ICFP referees helped improve the pre-
sentation significantly.

This work was supported by the Japan Society for the Pro-
motion of Science (Hosoya), the University of Pennsylvania’s
Institute for Research in Cognitive Science (Vouillon), and
the National Science Foundation under NSF Career grant
CCR-9701826 (Pierce).

9. REFERENCES

[1] A. Aiken and B. R. Murphy. Implementing regular
tree expressions. In J. Hughes, editor, Functional
Programming Languages and Computer
Architecture1991, volume 523 of Lecture Notes in
Computer Science. Springer-Verlag, 1991.

[2] A. Aiken and E. L. Wimmers. Solving systems of set
constraints (extended abstract). In Proceedings,
Seventh Annual IEEE Symposium on Logic in
Computer Science, pages 329-340, Santa Cruz,
California, 22-25 June 1992. IEEE Computer Society
Press.

[3] R. M. Amadio and L. Cardelli. Subtyping recursive
types. ACM Transactions on Programming Languages
and Systems, 15(4):575-631, 1993. Preliminary version
in POPL 91 (pp. 104-118); also DEC Systems
Research Center Research Report number 62, August
1990.

[4] Amy Felty, Elsa Gunter, John Hannan, Dale Miller,
Gopalan Nadathur and A. Scedrov. Lambda prolog:

[5]

[6]

[7]

(8]

[10]

[11]

[12]

[13]

[16]

[17]

[18]

An extended logic programming language. In E. L. R.
Overbeek, editor, Proceedings on the 9th International
Conference on Automated Deduction, volume 310 of
LNCS, pages 754-755, Berlin, May 1988. Springer.

L. Augustsson. Cayenne — a language with dependent
types. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming
(ICFP ’98), volume 34(1) of ACM SIGPLAN Notices,
pages 239-250. ACM, June 1999.

M. Brandt and F. Henglein. Coinductive
axiomatization of recursive type equality and
subtyping. In R. Hindley, editor, Proc. 8d Int’l Conf.
on Typed Lambda Calculi and Applications (TLCA),
Nancy, France, April 2-4, 1997, volume 1210 of
Lecture Notes in Computer Science (LNCS), pages
63-81. Springer-Verlag, Apr. 1997. Full version in
Fundamenta Informaticae, Vol. 33, pp. 309-338, 1998.
P. Buneman and B. Pierce. Union types for
semistructured data. In Proceedings of the
International Database Programming Languages
Workshop, Sept. 1999. Also available as University of
Pennsylvania Dept. of CIS technical report
MS-CIS-99-09.

S. S. Chawathe. Comparing hierarchical data in
external memory. In Proceedings of the Twenty-fifth
International Conference on Very Large Data Bases,
pages 90-101, Edinburgh, Scotland, U.K., Sept. 1999.
S. Cluet and J. Simeon. Using YAT to build a web
server. In Intl. Workshop on the Web and Databases
(WebDB), 1998.

H. Common, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications. Draft book; available
electronically on http://
www.grappa.univ-1lille3.fr/tata.

M. Fahndrich and A. Aijken. Making set-constraint
program analyses scale. Technical Report CSD-96-917,
University of California, Berkeley, Sept. 1996.

V. Gapeyev, M. Levin, and B. Pierce. Recursive
subtyping revealed. In Proceedings of the International
Conference on Functional Programming (ICFP), 2000.
J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

H. Hosoya and B. Pierce. Tree automata and pattern
matching, July 2000. Available through http://
www.cis.upenn.edu/ hahosoya/papers/
tapat-full.ps.

H. Hosoya and B. C. Pierce. XDuce: A typed XML
processing language. In Proceedings of Third
International Workshop on the Web and Databases
(WebDB2000), May 2000.

H. Hosoya, J. Vouillon, and B. C. Pierce. Regular
expression types for XML. Technical report,
University of Pennsylvania, 2000.

X. Leroy, J. Vouillon, D. Doligez, et al. The Objective
Caml system. Software and documentation available
on the Web, http://pauillac.inria.fr/ocaml/,
1996.

E. Meijer and M. Shields. XMLambda: A Functional
Programming Language for Constructing and
Manipulating XML Documents. page 13. Submitted

[19]

(20]

(21]

[22]

(23]

to USENIX 2000 Technical Conference.

T. Milo, D. Suciu, and V. Vianu. Typechecking for
xml transformers. In Proceedings of the Nineteenth
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 11-22. ACM,
May 2000.

H. Seidl. Deciding equivalence of finite tree automata.
SIAM Journal of Computing, 19(3):424-437, June
1990.

M. Wallace and C. Ranciman. Haskell and XML:
Generic combinators or type-based translation? In
Proceedings of the Fourth ACM SIGPLAN
International Conference on Functional Programming
(ICFP‘99), volume 34-9 of ACM Sigplan Notices,
pages 148-159, N.Y., Sept. 27-29 1999. ACM Press.
Extensible markup language (XML™).
http://www.w3.org/XML/.

XML Schema Part 0: Primer, W3C Working Draft.
http://www.w3.org/TR/xmlschema-0/, 2000.

