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Abstract

Regular expression types have been proposed as a
foundation for statically typed processing of XML
and similar forms of tree-structured data. To date,
however, regular expression types have been explored
in special-purpose languages (e.g., XDUcCE, CDUCE,
and XQUERY) with type systems designed around
regular expression types “from the ground up.” The
goal of the XTATIC language is to bring regular ex-
pression types to a broad audience by offering them as
a lightweight extension of a popular object-oriented
language, C7.

We develop here the formal core of the XTATIC
design—a combination of the tree-structured data
model of XDUCE and the classes-and-objects data
model of a conventional object-oriented language.
Our tool for this investigation is a tiny language
called FX with features drawn from Featherweight
Java (FJ) and from the core of XDUCE. Points
of interest include (1) a smooth interleaving of the
two value spaces, in which XDUCE’s tree structures
are grafted into of FJ’s class hierarchy while objects
and object types play the role of XDUCE’s label val-
ues and label types; (2) a “semantic” definition of
the subtype relation, inherited from XDUCE and ex-
tended to objects; and (3) a natural encoding of XML
documents and their schemas using a simple form of
singleton classes.

1 Introduction

The popularity of XML can be attributed, in part, to
the existence of a number of formalisms for specify-
ing the structure of XML documents. By supporting
dynamic consistency checking, ensuring that infor-
mation being exchanged (e.g., between modules in
an application or nodes in a distributed system) has
the expected structure, these schema languages sig-
nificantly increase the robustness of complex XML-
based information systems.

However, the exploitation of schema languages by
current XML technologies falls far short of what is

possible. In particular, schemas play little part in
the static analysis of programs that operate on XML
structures: they are not used for checking code for
inconsistencies at compile time, or for optimization—
in short, they are not used as types in the usual
programming-language sense of the term. Taking
advantage of this missed opportunity, and thereby
improving both the robustness and the efficiency of
XML-based information systems, is the long-range
goal of the XTATIC project at the University of Penn-
sylvania.

The key technology for this project is regular ez-
pression types. Regular expression types are based
on well-known constructions from automata theory—
they are a mild generalization of nondeterministic
tree automata. Their basic constructors (union, con-
catenation, repetition, etc.) are similar to those
found in existing XML schema formalisms such as
DTDs [35] and XML-Schema [36]. In a programming
language based on regular expression types, however,
XML trees are built-in values and static analysis of
the shapes of trees that may appear at run time (as
values of variables, parameters to methods, results of
complex expressions, etc.) becomes part of the ordi-
nary behavior of the typechecker.

Past work on regular expression types led to a
language prototype called XDUCE [16, 18, 15, 17].
XDUCE is a statically typed language for writing re-
cursive tree transformers—roughly, a statically typed
fragment of the popular XSLT language [37]. Be-
yond regular expression types, its main innovation
is a powerful form of regular expression pattern
matching—a statically typed “tree grep” primitive
that arises naturally from types [15]. The XDUCE
implementation demonstrates efficient algorithms for
subtyping and typechecking [18].

XDUCE has had a significant impact in parts of the
XML world; in particular, its influence can be seen in
the type system of the XML Query Algebra [11], the
core of the W3C standard query language for XML,
as well as newer schema languages such as TREX [§]
and Relax NG [9]. However, significant work remains
before the benefits of regular expression types can



be made available to the vast majority of XML pro-
grammers. In particular, the simple tree-data model
of XDUCE must be enriched to include objects.

We have begun a new phase of the XDUCE
project—a redesign and re-implementation along
more ambitious lines, dubbed XTATIC, whose main
focus is on inter-operability both at source level and
at run time with an established, object-oriented host
language. We have chosen compatibility with C* as
our immediate target; a similar exercise could easily
be carried out for a related language such as Java.
The goal is to make XTATIC as lightweight an ex-
tension of C* as possible, smoothly merging the tree
values and types of XDUCE with the familiar object
model of C* and re-using existing C* features wher-
ever possible in the design, rather than introducing
new, XML-specific mechanisms.

This paper develops the formal core of the XTATIC
design—a combination of the tree-structured data
model of XDUCE with the classes-and-objects model
of C*. Our tool for this investigation is a tiny
language called FX, which combines Featherweight
Java [19] with the core features of XDUCE. The main
points of interest in FX may be summarized as fol-
lows.

e The two original data models are tightly interwo-
ven in FX. On one hand, the subtype hierarchy of
tree types is grafted into the class hierarchy, al-
lowing tree values to be passed to generic library
facilities (e.g., collection classes), stored in fields
of objects, etc. Conversely, the role of labels and
label types in XDUCE is played by objects and
classes in FX.

e Subtyping in FX is a natural extension of both
the object-oriented subclass relation and the
richer subtype relation of regular expression
types. XDUCE’s simple “semantic” definition of
subtyping (sans inference rules) is extended to
objects and classes.

e FX enriches XDUCE’s regular expression pattern
matching construct with a natural form of type-
based pattern-matching on objects.

The paper is organized as follows. Section 2 gives
a brief illustrative example of XTATIC code. In Sec-
tion 3, we review some details of XDUCE and FJ’s
data models. Section 4—the heart of the paper—
combines these to produce the data model of FX.
The remainder of the the FX language is informally
described in Section 5; standard soundness proper-
ties are sketched in Section 6. In Section 7, we show
how the FX data model encodes XML types and

values. Section 8 discusses related work, and Sec-
tion 9 sketches our plans for the future development
of XTATIC.

2 Example

XTATIC provides general mechanisms for manipulat-
ing tree-structured data. In Section 7, we will show
in detail how this mechanism can be used to repre-
sent XML. Here, we use a preliminary sketch of the
idea from Section 7 to illustrate the features of the
language.

Assume we have a class Tag whose objects en-
code XML tags. Let classes Person, Name, Email,
Phone be descendants of Tag intended to encode XML
tags <person>, <name>, <email>, <phone>, and let
person, name, email, phone be variables containing
objects of the corresponding classes. Then the ex-
pression

<person>[
<name>[<"Queen Elisabeth">[]]
<email>[<"queen@buckingham.uk">[]] ]
<person>[
<name>[<"Tony Blair">[]]
<phone>[<"+44 34 3456">[]] 1]

can be thought of as representing an XML document
of a similar structure. A possible type for this ex-
pression is the sequence type

<Person>[
<Name>[<String>[]]
(<Email>[<String>[]]
| <Phone>[<String>[]1])
1.

A tree is constructed using the form <...>[...]
where <. ..> contains the tree’s label and [...] con-
tains a sequence of child trees. A sequence is built
by placing trees adjacent to each other. The type
constructor “|” is type alternation (union), and “*”
is repetition. Note that native C* values—the tag
objects person, name, etc., and strings—occur only
as labels.

Sequence values can be examined using type-based
pattern matching. For example, assuming the vari-
ables 1ist and phonebook each contain a sequence
of the type given above and spamlist holds a string,
the code fragment

match (list) {
case [ <Person>[<Name>[String]
<Email>[String e]]
Any 1:



spamlist =
/] ...
case [ (<Person>[Stringl p) Any ]:
phonebook = [ phonebook p ];
//...
case [ Any 1]:
//...

spamlist + "," + e;

¥

inspects the first tree in the sequence list and, if
the corresponding person has an email, extracts the
address into a string variable e and uses it to extend
the string spamlist; otherwise, the person must have
a phone, and the second case branch handles this
case by binding the whole entry to the variable p and
adding it to the end of the sequence stored in the
variable phonebook. The pattern Any in each match
clause matches an arbitrary sequence of trees. Tree
values, types, and patterns are enclosed in square
brackets, explicitly signaling the shift from the world
of host language (C*) values and types to the world
of trees.

3 Technical Background

The data model of a language is the collection of val-
ues that programs in the language manipulate, their
types, and fundamental relations such as value typ-
ing and subtyping. The data model is the bedrock on
which the full language definition (the syntax, typ-
ing rules, and evaluation rules for expressions) rests.
Because the primary topic of this paper is the com-
bination of trees and objects (and their types), the
data model of FX is where we will concentrate our
attention. As background for this development, we
begin in this section by sketching the data models
found in XDUCE and in FJ.

3.1 The XDucE Data Model

The data model of XDUCE is parameterized on a lan-
guage of labels. The details of these labels can vary
(and do vary, across the several published XDucE
papers and implementations), but all variations offer
the following common structure:

e a set L of label values, ranged over by 1,
e a set of label types, ranged over by L,

e a denotation function [ -] giving the set [L] C L
of label values that are members of each label
type L.

The subtyping relation on label types, written Ly C:
Loy, is generated by [ - ]—that is Ly C: Ly iff [L1] C
[L2]-

One simple choice of label language is to select an
arbitrary set of identifiers as the set L of label values;
for each value 1 € L, we consider 1 to be a label type
as well (i.e., 1 is the singleton type whose denotation
contains just 1); we also introduce the wildcard la-
bel type ~, denoting the whole set L. A yet simpler
choice would be to omit ~, but having a maximal label
type turns out to be quite useful in pattern matching,
where it functions as a “don’t care” pattern.

Having selected the language of labels, the XDUCE
data model can be defined in a uniform way. First, a
tree value t consists of a label value and a sequence
of children tree values:

t = <D[ty...t,] where n > 0

Now, a sequence value is a sequence t; ...t, of zero
or more tree values placed next to each other. (We
use the shorthand notation t throughout the paper
for sequences, and () to denote the empty sequence.
We write s t for the concatenation of the sequences
5 and t.)

XDUCE types—regular expression types—are built
from tree types and references to type names X from
a globally defined collection of type definitions:

T ==
X type name
<L>[T] tree
O empty sequence
TT concatenation
TIT union
T* repetition

We write def for the function that maps each X to its
definition T. The global definitions given by the func-
tion def may be recursive or mutually recursive, but
(to limit the expressive power of the type language
to describing regular, rather than context-free, sets
of trees), we impose the condition that all “loops”
from a variable X back to itself must pass through
the body of at least one <L>[T] construct—i.e., “top-
level” recursion is not allowed (see [18] for details).

Next, the denotation function [ - ] mapping types
T to sets of sequence values t is defined as the least
solution of the following equations:

[X] = [defX)] ~
[<0>[T]] = {<[E]l|1€[L] and T € [T]}
[O] = {0}

[T: o] = {% E|% €[Tu]E € [To]}
[T11T2] = [T:]U[T-]

[T]

{T1...%n [N >0AVE T €[T]}



The subtyping relation for regular expression types
is defined in the simplest imaginable way: T; <: Ty iff
[T1] C [T2]. The fact that subtyping can be defined
in this “semantic” fashion is actually quite important
in XDUCE. The alternative—writing down a collec-
tion of inference rules characterizing the same rela-
tion inductively—would be much heavier and harder
to understand than the subtype relations of most lan-
guages, since the regular expression type constructors
satisfy many algebraic laws arising from the associa-
tivity of comma and the associativity, commutativ-
ity, and distributivity (over sequencing and <L>[. . .])
of the (non-disjoint!) union. An inference-rule pre-
sentation of the subtyping relation can certainly be
given—indeed, it must be, since it is the basis for
the algorithm for subtype checking [18]—but it is not
pretty.

3.2 The FJ Data Model

Featherweight Java (or FJ) is a tiny calculus designed
to capture the essential typing mechanisms of class-
based object-oriented languages such as Java and C#.
It was first used by Igarashi, Pierce, and Wadler [19]
to formalize the GJ [5] type system, and has since
formed the basis of numerous formal studies of Java
and related languages [20, 30, 2, 3, 38, 1, 28, 22,
etc.]. FJ embodies the core mechanisms of object
creation, field access, method invocation, and in-
heritance (and—in the most common presentation,
though not here—casting) in exactly the same form
as they are found in Java, while omitting everything
else... from reflection and concurrency to interfaces,
overloading, static members, and even assignment.

An FJ program consists of a collection of class dec-
larations plus a single expression to be evaluated.
The types in an FJ program are just class names C.
FJ values are objects, which (since FJ is a declar-
ative language, the only things that distinguish one
object from another are its class and the arguments
passed to its constructor) are simply identified with
new expressions.

o == mnew C(og, ..., 0p)

The constructor arguments o1,. .., o0, (usually writ-
ten just ©) are required to correspond exactly to the
fields of the class C. For example, if C has fields
a and b and its immediate subclass D has fields e
and f, then an instance of D will have the form
new D(o0y,09,03,04), where o; is the value for the
a field of the new object, o5 is the value of the b field,
o3 of the e field, and o4 of the £ field.

The global set of class definitions in an FJ pro-
gram is formalized as a static context—a collection

of sets, relations, and functions summarizing differ-
ent aspects of the class definitions: the set of all
defined classes (which always includes the special
class Object); the immediate-subclass relation, which
must be tree-structured with Object at the root; the
list of field names and types in each class; the method
names and signatures in each class; and the method
bodies for each class. This static context is used to
define the typing and evaluation relations. For pur-
poses of discussing the FJ data model, we can restrict
attention to the part of the static context compris-
ing just the set of class names and the immediate-
subclass relation; we call this the static data context.

The subtype relation in FJ, written C; C: Ca, is
the reflexive and transitive closure of the immediate-
subclass relation. Like XDUCE’s, this definition of
subtyping is pleasingly simple; however, it has a com-
pletely different—more syntactic—character. In or-
der to combine the two data models, we need to look
for a more “semantic” presentation of this one (as we
remarked above, a syntactic presentation of XDUCE
subtyping is an unattractive alternative). This can
be achieved as follows.

We say that a value new C(9) is an instance of the
class C. That is, an object is an instance of the class
from which it was created. The denotation of a class
C is then the set of all instances of this class and all
its subclasses:

[l =

Note that this does not require that the constructor
arguments o belong to the types of the fields in class
C. This may appear overly permissive, but it has
some useful implications:

{o| o is an instance of D, for some D : C }

1. Tt is obvious from the definition that the “se-
mantic” subtyping relation derived from it coin-
cides exactly with the syntactic subclass relation:
Ci C: Cy iff [[Cl]] C [[CQ]].

2. This definition requires no changes if we enrich
the language with imperative features. A more
precise definition (“the values in type C are ob-
jects of the form new D(3), where D C: C and,
o; € [F;], where F; is the type of the i** field
of class D”) would require a co-inductive reading
(cf. [33]) to make sense in the imperative setting.

Intuitively, the reason we can get away with this per-
missive interpretation of object types is that later,
e.g., in the proof of soundness, we will never deal
with arbitrary elements of [C], but only with ele-
ments that we also know are well-typed (according
to the expression typing relation, which does ensure
that constructor arguments have the right types).



Values Types
Full FX language
a = FX value A = FX type
new C(3) object C class type
[t] delimited sequence [T] delimited RE type
Regular expression sublanguage
t u= T u= RE type
<a>[t] tree value X RE type name
<C>[T] tree type
O empty sequence
TT concatenation
TIT union
T repetition
Figure 1: FX values and types.
[t] | T arbitrary if C = Seq
Instances(C) = { Enew |C @ |= arbit}rary} otherwise
[c] = U{ Instances(D) |[DC:C}
[[x1] = [[def(X)1]
[[<c>[T1]] = {[ka>[t1]|a€[C] and [t] € [[T1]}
[LO1I] = {0}
[[Ty To1] = {[t1 t21| [t1] € [[T1]1], [t2] € [[T21] }
[[T11T21] = [[T:1]JU[[T21]
[LT*1] = {[t1...t,] |Vke€l...n. t €[T], for somen >0}

Figure 2: Type denotations.

4 The FX Data Model

The interweaving of XDUCE’s and FJ’s data models
in FX is founded on two observations.

1. We can treat sequences of trees as objects sim-
ply by “grafting” the whole collection of regu-
lar expression types into the class hierarchy, in-
venting a special class Seq whose subtypes are
all the regular expression types. This grafting
is justified by our intended compilation model—
reminiscent of GJ’s homogeneous translation [5,
19]—in which all regular expression types in an
FX program are “erased” to the single class type
Seq and all tree values are translated into objects
of class Seq.

2. The data model of objects and classes qualifies

as a “label language” in the sense discussed in
Section 3.1, so we can use arbitrary objects as
the labels in XDUCE trees and classes as label

types.

Formally, the data model is defined in three steps.
First, we give the syntax of values and types. Next,
we give the notion of a static context, which summa-
rizes the type-related information defined in a pro-
gram. Finally, fixing a particular static context, we
define the membership relation for values in types.

Figure 1 defines the syntax. An FX value a can
have one of two forms: it is either an object new C(a)
or a sequence [t] delimited by brackets. Observe
that, inside an object new C(@), the values of fields
may be arbitrary FX values @; in particular, they can
be sequences. The organization of FX types A is sim-
ilar, combining class types C and regular types [T].




Regular values t and regular types T are essentially
those of XDUCE, where any FX value can be used as
a label in a tree value and any class type C can be
used as a label in a tree type.

A static data context is a tuple DatCtr =
(Classes, C:, Typenames, def), where

e (Classes is a set of class names, ranged over by C
and containing special names Object and Seq;

e [:is a binary relation on Classes, generated as
a reflexive and transitive closure from a relation
corresponding to an “immediate predecessor”
function Parent: Classes\ {O0bject} — Classes;

o Typenames is a set of type names, ranged over
by X;

e def is a function from Typenames to types, that
maps each type name X to a regular expression
type T (its definition);

and such that

1. for each C € dom(Parent) there is n > 1 such
that Parent™(C) = Object;

2. Parent(Seq) = Object;
3. for every C € Classes, Parent(C) # Seq;

4. if a type name X' appears in def(X), then X' €
Typenames; and

5. a grammar obtained from def by considering
variables from Typenames as non-terminals gen-
erates a regular language (cf. Sect. 3.1).

The semantics of types is given by the denotation
function [ - ], which maps each type A to its set of
inhabitants a. This function is the least solution of
the equations in Figure 2. Note the special role of the
class Seq, whose denotation does not contain objects
(new Seq(@) is not in the denotation of any type),
but instead contains all sequence values.

Subtyping on FX types is defined semantically:

[A:] C [A2].

The XDUCE subtyping algorithm [18] can be used to
decide this relation, since it is parameterized by the
subtyping relation for tree label types (called there
“subtagging”), which corresponds in FX to the sub-
class relation C; C: Cs.

A <: Ay —

IThe careful reader may note a small discrepancy here: a se-
quence can be used as a label in another tree, as in <[s]>[t],
but a regular expression type cannot be similarly used as a la-
bel. This raises the question of what type can be given to a
value of the above form. As we shall see soon, the type would
have the form <Seq> [T].

5 The FX Language

The FX data model described in the previous section
establishes a skeleton, on which a full-blown program-
ming language can be constructed—providing ways
of interrogating and destructing values, as well as
abstraction mechanisms and all the other usual ap-
paratus. Naturally, FX’s value-destruction mecha-
nisms are contributed by the corresponding sublan-
guages: FJ provides field projection on objects and
XDUCE brings in regular-expression pattern match-
ing on sequences and trees. The abstraction mecha-
nisms of FX—classes, methods, and inheritance—are
taken entirely from FJ.

Figure 3 gives the syntax of FX expressions and
their constituent patterns. The behavior of most of
these constructs is standard; therefore we discuss the
language semantics mostly informally, commenting in
more detail on the issues that are novel in FX.

We do not describe concrete syntax for class and
method declarations: for the present discussion it is
more convenient to think about an FX program as
an abstract static context Ctx defined along the lines,
and as an extension of, the static data context DatCtz
of Section 4. Namely, in addition to the items from
DatCtx, the full context Ctx associates with each class
a collection of typed fields and a collection of methods
available for calling on the objects of the class. For
each method, Ctz provides its signature (types of the
arguments and the return type), the list of argument
variables, and the expression of the body. Addition-
ally, Ctzr must obey constraints on method types in
subclasses, stemming from the C# inheritance rules.

The only significant difference of an FX context
C'tz from the information provided by an FJ program
is that the types of fields and the types appearing in
method signatures are arbitrary FX types, i.e. they
can be regular types as well as classes. Consequently,
the subtyping relation used for checking the method
overriding constraints (as part of the process of check-
ing that a class is well-formed) is the semantic sub-
typing relation <:. Similarly, FX variables x (which
can only originate in FX as method argument names
or as binders in patterns) can hold any FX values,
either objects or sequences. As in FJ, there is a vari-
able this that can be used in expressions to refer to
the current object. The typing and evaluation rules
treat this variable specially.

The FX data model permits only tree values to
be members of sequences. That is, something like
[ [£] (new C(3)) [8] 1] isnot a well-formed value.
The syntax of expressions, however, does allow nested
sequences. The reason is that we want an expression



new C(€)

e.f

e.m(e)

<e>[e]

[e]

match(e){case [P]:

FX pattern
Q class pattern
delimited RE pattern

class pattern
C class
object binding

e}

expression
value variable
new object creation
field access
method call

tree

sequence

pattern match

P = RE pattern

X RE type name
<Q>[P] tree
O empty sequence
PP concatenation
P|P alternative
T* type repetition
P x RE value binding

Figure 3: FX language syntax.

like
[db.getPapers ("POPL") db.getPapers("ICFP")]

to be legal—provided the method getPapers() re-
turns values of a sequence type—and to mean the
concatenation of the sequences returned by the two
calls. Therefore, a nested sequence [ [e] [d] ] is
a valid FX expression, which evaluates to the same
value as [ & d 1. Generally, FX typing rules ensure
that an expression [e; e3] is legal only when e; and
ez both have valid regular types.

On the other hand, an object is never legal as a
member of a sequence and, symmetrically, a tree ex-
pression <e>[d] is never allowed outside the sequence
parentheses [...]. Since both are permitted syntac-
tically, this condition is checked by the typing rules.

Deconstruction of sequence values is done by
matching them against patterns using the match
construct, which syntactically resembles C* switch
statement but behaves more like XDUCE’s match.
That is, the behavior of an expression

match (d) {
case [P1]: eg;
case [P3]: es;
case [P,]: e,;
}

is to evaluate d and match the result against each
of the patterns in turn until the first one, say [P;],
matching the value is encountered. The successful

match produces an environment that maps variables
declared in [P;] to the appropriate portions of the
value computed from d. The result of the whole ex-
pression is the result of evaluating e;, assuming vari-
able mappings from the environment. So, the case
bodies do not have the “fall through” behavior of
switch. The value of match’s input d must be a se-
quence, and all case patterns must be sequence pat-
terns.

The syntax of FX sequence patterns [P] is essen-
tially that of XDUCE: a pattern is just a type anno-
tated with variable binders.? This intuition is ex-
tended in FX to class types. A class pattern has
the form C x, where C is a class name and x is a
variable to be bound. Correspondingly, the pattern-
matching relation a € R = X, which defines when
a value a matches a pattern R to produce a value
environment ¥, is based on the pattern-matching re-
lation [t] € [P] = X of XDUCE. Additional rules
are needed only to handle class patterns:

DLC:C
new D(3) €C= e

SeqC:C
[E1€eC=e

aeC=%
a€eC x=>x:a,X

2As in XDUCE, we demand that each pattern P satisfy the
same regularity constraint as for types, and that it be lin-
ear. Intuitively, linearity means that no variable is bound in
P twice, except in alternation patterns, where branches must
bind exactly the same variables (see [15], appendix A.2, for the
formal definition).




Observe that the rules agree with the denotation
function [-] in the sense that a € [C1] and [C{] C [C2]
imply a € C; = . Also note that, like the definition
of [ -], the class pattern matching relation does not
examine the types of an object’s fields. This “per-
missiveness” is safe because the FX expression typ-
ing relation guarantees that no object with ill-typed
fields can ever be created (see Prop. 6.3).

Since classes are types of labels in tree types, it is
natural to use a class pattern in the label position in
a tree pattern. This allows one to extract a label from
a tree as an object for later use in the program. It is
worthwhile noticing that this is a benefit of our goal
to use, whenever possible, C* features for the needs
of regular types. To compare, in XDUCE a label is an
integral part of a tree and cannot be extracted from
it as a first-class value.

The typing of match depends on the type inference
for variables bound in its patterns. In XDUCE the
type inference is formalized as the judgment T>P = T,
relating an input type T, a pattern P and a typing en-
vironment I'. This judgment is precise: for each type
I'(x), each value from its denotation can be possi-
bly bound to x at run time as a result of matching
some value from T’s denotation against P, and [I'(x)]
does not contain values that cannot be thus obtained.
The precision is achieved thanks to the availability of
unrestricted union operation on XDUCE types. In
FX, however, we cannot have union for class types,
and have to use an upper bound instead, sacrificing
the precision of type inference. For example, sup-
pose class D has A, B, and C as its direct subclasses,
and consider matching values of type [<D>[1] against
pattern [<A x>[] | <B x) [1]. Since there is no class
whose denotation is an exact union of the denotations
of A and B, the only reasonable type assignment for
x is D, which is not precise—x can never be bound to
an object of C, another D’s descendant. Therefore, we
decided to formalize FX type assignment for pattern
variables by a simpler relation, >R = I', which does
not take the input type into account and assigns I'(x)
to be the type on which x appears as an annotation
in the pattern R (and, in the case of the alternation
pattern like in the above example—the join of the
types of the alternatives, defined as their smallest ex-
pressible common upper bound).

In XDUCE, precise pattern type inference extends
to the whole collection of patterns of a match: the in-
put type for the i** pattern P; is not the type of input
to the whole match, but rather the input restricted
to those values that could not be matched by any of
the previous patterns. Implementation of this fea-
ture depends on the fact that the difference of two

regular expression types is also a regular expression
type. Since this property fails for classes (the “se-
mantic difference” of two classes is not necessarily a
class), we cannot guarantee precise type inference in
Xtatic.® However, we are still able to check match
expressions for exhaustiveness, by checking that the
input type is a subtype of the union of the types of
all the patterns.* We can also provide a restricted
form of pattern redundancy checking by comparing,
for each prefix of the pattern list, the union of the
prefix’s patterns and the input type.

6 Properties

We can now state for FX the standard results of
static type safety (“preservation” and “progress”).
The proofs (which are straightforward inductive ar-
guments) are omitted. All the results are stated as-
suming there is a well-formed static context corre-
sponding to an FX program.

Value environments ¥ and typing environments I'
are mappings from variables x to values a, and, cor-
respondingly, to types A. An environment with the
empty domain is written e.

The following three relations formalizing FX oper-
ational semantics can be obtained by adopting the
corresponding relations from FJ and XDUCE, taking
into account the comments in Section 5 (we have to
omit their formal definitions from the paper for the
lack of space):

e I' e € A, “in the typing environment I', expres-
sion e gets type A”,

e Y el a, “in the value environment 3., expres-
sion e evaluates to value a”,

e ¥ F e | “evaluation of e gets stuck in finite
number of steps” (this relation is specific to big-
step semantics, the analogous property for small-
step semantics says that e gets reduced to a non-
value, an expression to which none of the evalu-
ation rules is applicable).

3We are currently exploring (with Alan Schmitt) some ideas
on how to eliminate this limitation. It appears possible to ex-
tend the type system of FJ with the boolean operations of
intersection, union, and difference on class types, with the re-
striction that these extended types are used only in variable
and method declarations and in patterns, not in new expres-
sions. This would re-open the possibility of precise type infer-
ence for XTATIC.

4Note that this method does not allow us to check the ex-
haustiveness of a sequence of class patterns, due to the unavail-
ability of precise unions of class types (the “semantic union” of
two classes does not necessarily correspond to a class). This is
the reason why our match construct is restricted to sequence
patterns only.



Write a €: A to mean that e - a € A’ for some
A" <: A. A value environment ¥ conforms to a typing
environment I', written ¥ €: T, if dom(X) = dom(T)
and X(x) €: I'(x), for all x.

6.1 Theorem [Preservation]: For ¥ e: T', if T" +
ecAand X+ el a, then a €: A.

6.2 Theorem [Progress]: If ¢ - e € A, then not
ekelf.

Both of the standard theorems depend (in the
parts of their proofs corresponding to the match con-
struct) on the following property of pattern matching,
which is interesting in itself. Recall that the object-
against-pattern case in our pattern matching relation
abR = ¥ does not check for the well-typedness of ob-
ject fields. The property says that, despite of this, if
pattern matching is done against a well-typed value
a, any binding in the resulting environment is also
well-typed.

6.3 Proposition: Let a and A be such that e - a €
A.Ifa€eR= X and bR = T, then A <: tyof (R) and
¥ e: T. (We write tyof (R) for the type obtained from
the pattern R by erasing value binding annotations.)

7 XML in FX

So far, none of the mechanisms we have described
have been especially tied to XML—we have simply
established a generic foundation for representing and
manipulating ordered, labeled tree structures in an
object-oriented setting. Our final job is to show how
this foundation supports a natural encoding of (most
of) XML itself, based on a simple form of singleton
types and a modicum of syntactic sugar.

We begin by explaining how the textual “leaf data”
of XML documents, known as PCDATA (parsed char-
acter data), can be treated. Our first step is to ex-
tend, conceptually, the C* data model by introduc-
ing singleton classes for individual characters. We
assume that the data context DatCtz provides a class
Char, corresponding to the standard C* character
class, plus, for each character c, a class Char. extend-
ing Char. All these classes have no fields and have
nullary constructors—thus, each class Char, contains
only a single object, new Char, (), which we can iden-
tify with the character c itself. Now, a C* character
literal, say a’, is considered as syntactic sugar for
either the object new Char, (), when used in an ex-
pression, or for the class Char,, when used in a type.

We can now define a regular expression type
PCDATA for representing XML character data:

def(PCDATA) =  ( <Char>[] )

That is, an XML text value is represented by a se-
quence of trees, where each tree has no children and
has a character object as its label. The type PCDATA
contains arbitrary text strings, so we can write pat-
terns like <Object>[PCDATA], which matches a tree
whose body contains only character data.

Why we did not adopt the more obvious choice
of using C*’s String class to hold XML character
data? One reason is that the PCDATA representation
opens the way to interesting uses of pattern matching
for string regular expression processing. Since each
Char, is a subtype of Char, we can write types that
restrict text to a particular form. For example, all
character sequences starting with ‘a’ and ending with
v’ belong to the type

<'a’>[] PCDATA <b'>[].

This type, like any XTATIC type, can be annotated
with variable binders to obtain a pattern. The gen-
eral pattern-matching facility, then, offers functional-
ity somewhat similar to that of Perl’s regular expres-
sion string patterns, but with static typing support.
(See [32] for a deeper exploration of this idea.)

Another reason for using PCDATA instead of String
is that, in XML, two character sequences following
each other are indistinguishable from a single larger
character sequence. The PCDATA type satisfies this
requirement,

[PCDATA PCDATA] = [<Char>[]x <Char>[]%*]
[<Char>[1%]

[PCDATA]

but a String-based representation does not, since
[<String>[] <String>[1] # [<String>[1].

The encoding of XML documents in XTATIC now
follows naturally—all we need is an encoding for XML
tags, and this can be obtained by following exactly
the same intuitions that we used for characters. We
assume that the data context DatCtx contains a spe-
cial class Tag and, for each XML tag <g>, a singleton
class Tageg> (with the object new Tageg> () as its only
inhabitant) as an immediate subclass of Tag. Then,
for an XML fragment

<basket> <apple/> <banana/> </basket>

the corresponding XTATIC value is

<new Tagcpasket> ()>[ <new Tag<app1e> O>]
<new Tag<ba.nana> () > [] ]



and the corresponding type is

<Tag<basket>>[ <Tag<app1e>> [:I <Tag<banana>> [:I :I

Of course, an implementation needs special syntax
that makes these values and types readable (and even
writable!). The concrete syntax in our current pro-
totype implementation looks very close to standard
XML.

Together, the encodings of character data and tags
allow a good-size fragment of XML to be represented
very directly in FX. (There are still important parts
missing, though. Most urgently, we still lack a good
treatment of attributes which, until very recently [14],
was also lacking in XDUCE.)

The only basic data type provided by the XML
standard is character sequences. Some schema, for-
malisms, however, introduce datatypes—a set of con-
ventions by which a schema can specify that a par-
ticular textual fragment in an XML document is sup-
posed to represent a non-textual value, e.g. a float or
a date. Some of these datatype descriptions can be
captured using subtypes of PCDATA built from regular
expression operators to mimic the string regular ex-
pressions that describe particular datatype formats.
Alternatively, the FX framework could accommodate
a Schema-datatype-aware encoding of XML, when a
text representing a Schema datatype value gets trans-
lated directly into a value of an appropriate C* type
(placed as a label of a childless tree), bypassing the
PCDATA representation.

8 Related Work

There is a substantial literature (and many for-
malisms and tools) addressing dynamic validation
of XML documents against expected schemas, ei-
ther by stand-alone processors or during docu-
ment construction, as has been proposed for DOM
Level 3 [10]. While XTATIC shares some formal back-
ground with these techniques, its central goal—to
support static checking of XML-manipulating code—
falls completely outside their purview.

Among static approaches, there are two overlap-
ping kinds of work that are directly relevant to ours:
(1) work on providing XML processing capabilities
in pre-existing programming languages with static
guarantees of correctness, and (2) work on combining
object-orientation with XML-like data models.

A popular direction for work of the first kind is to
provide a translation that generates type definitions
(and value constructors) in the original language cor-
responding to XML types of interest. Examples in-
clude JAXB [31], Relaxer [27], HaXML [34], and

XM [23, 29]. One disadvantage of these translations
is that they tend to introduce “spurious structure,”
destroying some useful flexibility in the subtype rela-
tion. This point is discussed in detail in [17] and [13].

There can be varying degrees of integration of a
“foreign” data model into the object-oriented data
model. One is creating a combined data model that
incorporates the features of both on the equal level.
A successful example is the ODMG data model [6],
an accepted standard for object-oriented databases,
which offers a class-based object-oriented type sys-
tem analogous to that of programming languages like
C¥ together with a few other built-in type construc-
tors: records, sets, bags, lists and arrays (all of them
typed).

A greater degree of integration can be achieved by
taking the object-oriented data model as primary and
the other data model as subsidiary, in the sense that
its values can also be viewed as objects. This ap-
proach has the advantage of better integration with
legacy software written entirely under the original
object-oriented model. Examples of this approach
can be found in both the programming language and
database communities.

The Pizza [25] project extended Java with para-
metric polymorphism, higher-order functions, and
tagged union types with pattern matching. (The
polymorphism component became the basis for the
GJ [5] proposal for adding generic types for Java.) All
these features where implemented by translation into
pure Java in such a way that the extended data model
is used to typecheck Pizza source, while run-time
representations of the additional features are objects
of either pre-determined Java classes (for their ho-
mogeneous translation), or of classes generated from
the Pizza source (for the heterogeneous translation).
We plan to use a scheme analogous to the homo-
geneous translation in the final implementation of
XTATIC. Current work on the programming language
Scala [24] is aimed at incorporating many of the same
ideas as Pizza in a language aimed at programming
Web services, including XML processing.

Even before XML became popular, the database
community was actively investigating the manage-
ment of “semistructured” data; the Object Exchange
Model (OEM) [26] is a popular formalism in this area.
An OEM data value is a directed graph (often just a
tree) with edges labeled by tags, internal nodes con-
taining unique identifiers, and leaf nodes containing
atomic values (integers, strings, etc.).

The combination of ordinary algebraic types with
objects in the ODMG data model proves to be rather
inflexible for working with semistructural data, as



it involved encodings within the structural ODMG
model, which are usually complex and difficult to
manage and evolve. The Ozone project [21] ap-
proached this problem by integrating the OEM data
model into the ODMG data model. Their solution is
similar to ours at the level of values: first, the OEM
model is generalized to allow arbitrary ODMG val-
ues, including objects and structural values as leaves;
second, a special ODMG class, OEM, is designated to
hold all OEM values. The OEM values are ultimately
implemented as objects of 0EM subclasses. The OEM
data model, however, is not statically typed. The
motivation for Ozone was to allow convenient manip-
ulation of semistructured data in an object-oriented
database while avoiding the overly strict ODMG typ-
ing restrictions. Our contribution can be viewed as
proceeding from the observation that an Ozone-like
integration of objects and semistructured data can be
carried out in a fully typed way, once an appropriate
alternative to algebraic types (i.e., regular expression
types) is identified.

Two ongoing language design efforts that are very
close to XTATIC in intentions and approach are
CDucCE and JWiGc. JWIG [7] is an extension of
Java intended for programming interactive sessions
between Web servers and clients. Although quite dif-
ferent in style from XTATIC (it uses data flow analy-
sis to check well-formedness of XML expressions con-
structed by filling in “templates”, rather than a con-
ventional type system and tree expression language),
the basic expressive power of Jwig’s analysis is close
to that of XDUCE’s type system; see [7] for a detailed
discussion of this point.

CDUCE [4], similarly to XTATIC, aims to intro-
duce XDUCE features into an object-oriented type
system. The latter, in case of CDUCE, is A-&—a vari-
ant of A-calculus with overloading, commonly used as
a formalism for multiple-dispatch OO languages. As
XTATIC, CDUCE adopts the semantic interpretation
of subtyping to a larger type system [12]. The major
difference is the need to give semantic interpretation
of arrow types, which does not arise in XTATIC. As-
suming that functional types are to be inhabited by
function closures, a natural equation for them (in the
spirit of equations in Fig. 2) would be

[A—B] = { fix £(x:A"):B".e | [A] C [A'], [B'] € [B] }

However, it does not give rise to a monotone operator
on “denotation candidates”, so the denotation func-
tion [ -] cannot be guaranteed to exist as the least
fixed point of the operator. In contrast to XDUCE
and XTATIC, CDUCE has to justify existence of [ -]
by other means. A further complexity dimension in

CDUCE is the support for the full set of boolean type
constructors (including intersection and difference).

9 Future Work

We are currently experimenting with a prototype in-
terpreter for XTATIC. Though it still lacks most of
the features of C#, the language implemented by the
interpreter goes quite a bit beyond the simple FX core
described here—in particular, it includes imperative
features, interfaces, and overloading; we have used it
to experiment with a number of small demos. Our
immediate goals include handling a larger fragment
of C*#, building more ambitious demos, and replac-
ing the simple interpreter by a back end targeting the
.NET Common Language Runtime.

Another important near-term goal is to extend the
type system to encompass a larger part of XML—
most urgently, attributes. Hosoya and Murata [14]
have recently proposed a typing mechanism and cor-
responding algorithms based on the attribute-element
constraints of Relax NG; we hope to be able to adapt
this proposal to XTATIC. We also plan to implement
translators from standard XML schema languages (in
particular, a subset of the XML-Schema standard)
into XTATIC.

Our longer-term goals concentrate in two major ar-
eas: improving the efficiency of the underlying al-
gorithms and run-time representations, and refining
and extending the design of the core language. On
the efficiency side, the main development currently in
the works is high-performance compilation of pattern
matching. We also need to come up with better run-
time representations for certain special cases, while
keeping compliance with the basic data model. One
case in point is the PCDATA type. The typing and
pattern-matching properties of the PCDATA definition
given in Section 7 are attractive, but the naive rep-
resentation that we sketched is clearly too heavy to
perform well; something more clever will be needed.
At the level of the core language design, there are
also numerous questions to be considered. Can ob-
jects and trees be further unified? E.g., could pattern
matching be used to extract object fields? Could at-
tributes and fields be unified? Can we offer other
kinds of pattern matching primitives, e.g. support
for XPath? And, last but not least, can the XTATIC
design be extended to cope with parametric polymor-
phism (“generics” in C* parlance)?
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