Computing Surveys, Vol 17 n. 4, pp 471-522, December 1985

On Understanding Types,
Data Abstraction, and Polymorphism

Luca Cardelli

AT&T Bell Laboratories, Murray Hill, NJ 07974
(current address: DEC SRC, 130 Lytton Ave, Palo Alto CA 94301)

Peter Wegner
Dept. of Computer Science, Brown University
Providence, R1 02912

Abstract

Our objective is to understand the notion of fype in programming languages, present a model of typed,
polymorphic programming languages that reflects recent research in type theory, and examine the relevance
of recent research to the design of practical programming languages.

Object-oriented languages provide both a framework and a motivation for exploring the interaction
among the concepts of type, data abstraction, and polymorphism, since they extend the notion of type to
data abstraction and since type inheritance is an important form of polymorphism. We develop a A-calculus-
based model for type systems that allows us to explore these interactions in a simple setting, unencumbered
by complexities of production programming languages.

The evolution of languages from untyped universes to monomorphic and then polymorphic type
systems is reviewed. Mechanisms for polymorphism such as overloading, coercion, subtyping, and
parameterization are examined. A unifying framework for polymorphic type systems is developed in terms
of the typed A-calculus augmented to include binding of types by quantification as well as binding of values
by abstraction.

The typed A-calculus is augmented by universal quantification to model generic functions with type
parameters, existential quantification and packaging (information hiding) to model abstract data types, and
bounded quantification to model subtypes and type inheritance. In this way we obtain a simple and precise
characterization of a powerful type system that includes abstract data types, parametric polymorphism, and
multiple inheritance in a single consistent framework. The mechanisms for type checking for the augmented
A-calculus are discussed.

The augmented typed A-calculus is used as a programming language for a variety of illustrative
examples. We christen this language Fun because fun instead of A is the functional abstraction keyword
and because it is pleasant to deal with.

Fun is mathematically simple and can serve as a basis for the design and implementation of real
programming languages with type facilities that are more powerful and expressive than those of existing
programming languages. In particular, it provides a basis for the design of strongly typed object-oriented
languages.



Contents

1. From Untyped to Typed Universes
1.1. Organizing Untyped Universes
1.2. Static and Strong Typing
1.3. Kinds of Polymorphism
1.4. The Evolution of Types in Programming Languages
1.5. Type Expression Sublanguages
1.6. Preview of Fun
2. The A-Calculus
2.1. The Untyped A-Calculus
2.2. The Typed A-Calculus
2.3. Basic Types, Structured Types and Recursion
3. Types are Sets of Values
4. Universal Quantification
4.1. Universal Quantification and Generic Functions
4.2, Parametric Types
5. Existential Quantification
5.1. Existential Quantification and Information Hiding
5.2. Packages and Abstract Data Types
5.3. Combining Universal and Existential Quantification
5.4. Quantification and Modules
5.5. Modules are First-Class Values
6. Bounded Quantification
6.1. Type Inclusion, Subranges, and Inheritance
6.2. Bounded Universal Quantification and Subtyping
6.3. Comparison with Other Subtyping Mechanisms
6.4. Bounded Existential Quantification and Partial Abstraction
7. Type Checking and Type Inference
8. Hierarchical Classification of Type Systems
9. Conclusions
Acknowledgements
References
Appendix: Type Inference Rules



1. From Untyped to Typed Universes

1.1. Organizing Untyped Universes

Instead of asking the question What is a type? we ask why types are needed in programming
languages. To answer this question we look at how types arise in several domains of computer science and
mathematics. The road from untyped to typed universes has been followed many times in many different
fields, and largely for the same reasons. Consider, for example, the following untyped universes:

(1) Bit strings in computer memory
(2) S-expressions in pure Lisp

(3) A-expressions in the A-calculus
(4) Sets in set theory

The most concrete of these is the universe of bit strings in computer memory. ‘Untyped’ actually
means that there is only one type, and here the only type is the memory word, which is a bit string of fixed
size. This universe is untyped because everything ultimately has to be represented as bit strings: characters,
numbers, pointers, structured data, programs, etc. When looking at a piece of raw memory there is generally
no way of telling what is being represented. The meaning of a piece of memory is critically determined by
an external interpretation of its contents.

Lisp' s S-expressions form another untyped universe, one which is usually built on top of the previous
bit-string universe. Programs and data are not distinguished, and ultimately everything is an S-expression of
some kind. Again, we have only one type (S-expressions), although this is somewhat more structured
(atoms and cons-cells can be distinguished) and has better properties than bit strings.

In the A-calculus, everything is (or is meant to represent) a function. Numbers, data structures and
even bit strings can be represented by appropriate functions. Yet there is only one type: the type of
functions from values to values, where all the values are themselves functions of the same type.

In set theory, everything is either an element or a set of elements and/or other sets. To understand how
untyped this universe is, one must remember that most of mathematics, which is full of extremely rich and
complex structures, is represented in set theory by sets whose structural complexity reflects the complexity
of the structures being represented. For example, integers are generally represented by sets of sets of sets
whose level of nesting represents the cardinality of the integer, while functions are represented by possibly
infinite sets of ordered pairs with unique first components.

As soon as we start working in an untyped universe, we begin to organize it in different ways for
different purposes. Types arise informally in any domain to categorize objects according to their usage and
behavior. The classification of objects in terms of the purposes for which they are used eventually results in
a more or less well-defined type system. Types arise naturally, even starting from untyped universes.

In computer memory, we distinguish characters and operations, both represented as bit strings. In
Lisp, some S-expressions are called lists while others form legal programs. In A-calculus some functions are
chosen to represent boolean values, others to represent integers. In set theory some sets are chosen to denote
ordered pairs, and some sets of ordered pairs are then called functions.

Untyped universes of computational objects decompose naturally into subsets with uniform behavior.
Sets of objects with uniform behavior may be named and are referred to as types. For example, all integers
exhibit uniform behavior by having the same set of applicable operations. Functions from integers to
integers behave uniformly in that they apply to objects of a given type and produce values of a given type.

After a valiant organization effort, then, we may start thinking of untyped universes as if they were
typed. But this is just an illusion, because it is very easy to violate the type distinctions we have just created.
In computer memory, what is the bit-wise boolean or of a character and a machine operation? In Lisp, what
is the effect of treating an arbitrary S-expression as a program? In the A-calculus, what is the effect of a
conditional over a non-boolean value? In set theory, what is the set-union of the function successor and the
function predecessor?

Such questions are the unfortunate consequence of organizing untyped universes without going all the
way to typed systems; it is then meaningful to ask about the (arbitrary) representations of higher-level
concepts and their interactions.

1.2. Static and Strong Typing

A type system has as its major purpose to avoid embarrassing questions about representations, and to
forbid situations where these questions might come up. In mathematics as in programming, types impose
constraints which help to enforce correctness. Some untyped universes, like naive set theory, were found to
be logically inconsistent, and typed versions were proposed to eliminate inconsistencies. Typed versions of
set theory, just like typed programming languages, impose constraints on object interaction which prevent
objects (in this case sets) from inconsistent interaction with other objects.

A type may be viewed as a set of clothes (or a suit of armor) that protects an underlying untyped
representation from arbitrary or unintended use. It provides a protective covering that hides the underlying
representation and constrains the way objects may interact with other objects. In an untyped system untyped
objects are naked in that the underlying representation is exposed for all to see. Violating the type system
involves removing the protective set of clothing and operating directly on the naked representation.

Objects of a given type have a representation that respects the expected properties of the data type.
The representation is chosen to make it easy to perform expected operations on data objects. For example,



positional notation is favored for numbers because it allows arithmetic operations to be easily defined. But
there are nevertheless many possible alternatives in choosing data representations. Breaking the type system
allows a data representation to be manipulated in ways that were not intended, with potentially disastrous
results. For example, use of an integer as a pointer can cause arbitrary modifications to programs and data.

To prevent type violations, we generally impose a static type structure on programs. Types are
associated with constants, operators, variables, and function symbols. A type inference system can be used
to infer the types of expressions when little or no type information is given explicitly. In languages like
Pascal and Ada, the type of variables and function symbols is defined by redundant declarations and the
compiler can check the consistency of definition and use. In languages like ML, explicit declarations are
avoided wherever possible and the system may infer the type of expressions from local context, while still
establishing consistent usage.

Programming languages in which the type of every expression can be determined by static program
analysis are said to be statically typed. Static typing is a useful property, but the requirement that all
variables and expressions are bound to a type at compile time is sometimes too restrictive. It may be
replaced by the weaker requirement that all expressions are guaranteed to be type-consistent although the
type itself may be statically unknown; this can be generally done by introducing some run-time type
checking. Languages in which all expressions are type-consistent are called strongly typed languages. If a
language is strongly typed its compiler can guarantee that the programs it accepts will execute without type
errors. In general, we should strive for strong typing, and adopt static typing whenever possible. Note that
every statically typed language is strongly typed but the converse is not necessarily true.

Static typing allows type inconsistencies to be discovered at compile time and guarantees that
executed programs are type-consistent. It facilitates early detection of type errors and allows greater
execution-time efficiency. It enforces a programming discipline on the programmer that makes programs
more structured and easier to read. But static typing may also lead to a loss of flexibility and expressive
power by prematurely constraining the behavior of objects to that associated with a particular type.
Traditional statically typed systems exclude programming techniques which, although sound, are
incompatible with early binding of program objects to a specific type. For example they exclude generic
procedures, e.g. sorting, that capture the structure of an algorithm uniformly applicable to a range of types.

1.3. Kinds of Polymorphism

Conventional typed languages, such as Pascal, are based on the idea that functions and procedures,
and hence their operands, have a unique type. Such languages are said to be monomorphic, in the sense that
every value and variable can be interpreted to be of one and only one type. Monomorphic programming
languages may be contrasted with polymorphic languages in which some values and variables may have
more than one type. Polymorphic functions are functions whose operands (actual parameters) can have
more than one type. Polymorphic types are types whose operations are applicable to values of more than
one type.

parametric
universal
inclusion
polymorphism
overloading
ad-hoc
coercion

Figure 1: Varieties of polymorphism.

Strachey [Strachey 67] distinguished, informally, between two major kinds of polymorphism.
Parametric polymorphism is obtained when a function works uniformly on a range of types: these types
normally exhibit some common structure. Ad-hoc polymorphism is obtained when a function works, or
appears to work, on several different types (which may not exhibit a common structure) and may behave in
unrelated ways for each type.

Our classification of polymorphism in Figure 1 refines that of Strachey by introducing a new form of
polymorphism called inclusion polymorphism to model subtypes and inheritance. Parametric and inclusion
polymorphism are classified as the two major subcategories of universal polymorphism, which is contrasted
with nonuniversal or ad-hoc polymorphism. Thus Figure 1 reflects Strachey' s view of polymorphism but
adds inclusion polymorphism to model object-oriented programming.

Parametric polymorphism is so called because the uniformity of type structure is normally achieved
by type parameters, but uniformity can be achieved in different ways, and this more general concept is
called universal polymorphism. Universally polymorphic functions will normally work on an infinite
number of types (all the types having a given common structure), while an ad-hoc polymorphic function
will only work on a finite set of different and potentially unrelated types. In the case of universal



polymorphism, one can assert with confidence that some values (i.e., polymorphic functions) have many
types, while in ad-hoc polymorphism this is more difficult to maintain, as one may take the position that an
ad-hoc polymorphic function is really a small set of monomorphic functions. In terms of implementation, a
universally polymorphic function will execute the same code for arguments of any admissible type, while
an ad-hoc polymorphic function may execute different code for each type of argument.

There are two major kinds of universal polymorphism, i.e., two major ways in which a value can have
many types. In parametric polymorphism, a polymorphic function has an implicit or explicit type
parameter, which determines the type of the argument for each application of that function. In inclusion
polymorphism an object can be viewed as belonging to many different classes which need not be disjoint,
i.e. there may be inclusion of classes. These two views of universal polymorphism are not unrelated, but are
sufficiently distinct in theory and in practice to deserve different names.

The functions that exhibit parametric polymorphism are also called generic functions. For example,
the length function from lists of arbitrary type to integers is called a generic length function. A generic
function is one which can work for arguments of many types, generally doing the same kind of work
independently of the argument type. If we consider a generic function as a single value, it has many
functional types and is therefore polymorphic. Ada generic functions are a special case of this concept of
generic.

There are also two major kinds of ad-hoc polymorphism. In overloading the same variable name is
used to denote different functions, and the context is used to decide which function is denoted by a
particular instance of the name. We may imagine that a preprocessing of the program will eliminate
overloading by giving different names to the different functions; in this sense overloading is just a
convenient syntactic abbreviation. A coercion is instead a semantic operation which is needed to convert an
argument to the type expected by a function, in a situation which would otherwise result in a type error.
Coercions can be provided statically, by automatically inserting them between arguments and functions at
compile time, or may have to be determined dynamically by run-time tests on the arguments.

The distinction between overloading and coercion blurs in several situations. This is particularly true
when considering untyped languages and interpreted languages. But even in static, compiled languages
there may be confusion between the two forms of ad-hoc polymorphism, as illustrated by the following
example.

3
3.0
3
3.0

+ + + +
ABRARN

.0
.0

Here, the ad-hoc polymorphism of + can be explained in one of the following ways:

- The operator + has four overloaded meanings, one for each of the four combinations of argument
types.

- The operator + has two overloaded meanings, corresponding to integer and real addition. When one
of the argument is of type integer and the other is of type real, then the integer argument is
coerced to the type real.

- The operator + is defined only for real addition, and integer arguments are always coerced to
corresponding reals.

In this example, we may consider the same expression as exhibiting overloading or coercion, or both (and
also changing meaning), depending on an implementation decision.

Our definition of polymorphism is applicable only to languages with a very clear notion of both type
and value. In particular, there must be a clear distinction between the inherent type of an object and the
apparent type of its syntactic representations in languages that permit overloading and coercion. These
issues are further discussed below.

If we view a type as partially specifying the behavior, or intended usage, of associated values, then
monomorphic type systems constrain objects to have just one behavior, while polymorphic type systems
allow values to be associated with more than one behavior. Strictly monomorphic languages are too
restrictive in their expressive power because they do not allow values, or even syntactic symbols that denote
values, to exhibit different behavior in different contexts of use. Languages like Pascal and Ada have ways
of relaxing strict monomorphism, but polymorphism is the exception rather than the rule and we can say
that they are mostly monomorphic. Real and apparent exceptions to the monomorphic typing rule in
conventional languages include:

(1) Overloading: integer constants may have both type integer and real.

Operators such as + are applicable to both integer and real arguments.
(2) Coercion: an integer value can be used where a real is expected, and vice versa.
(3) Subtyping: elements of a subrange type also belong to superrange types.
(4)Value sharing: nil in Pascal is a constant which is shared by all the pointer types.

These four examples, which may all be found in the same language, are instances of four radically
different ways of extending a monomorphic type system. Let us see how they fit in the previous description
of different kinds of polymorphism.

Overloading is a purely syntactic way of using the same name for different semantic objects; the
compiler can resolve the ambiguity at compile time, and then proceed as usual.



Coercion allows the user to omit semantically necessary type conversions. The required type
conversions must be determined by the system, inserted in the program, and used by the compiler to
generate required type conversion code. Coercions are essentially a form of abbreviation which may reduce
program size and improve program readability, but may also cause subtle and sometimes dangerous system
errors. The need for run-time coercions is usually detected at compile time, but languages like (impure)
Lisp have plenty of coercions that are only detected and performed at run time.

Subtyping is an instance of inclusion polymorphism. The idea of a type being a subtype of another
type is useful not only for subranges of ordered types such as integers, but also for more complex structures
such as a type representing Toyotas which is a subtype of a more general type such as Vehicles. Every
object of a subtype can be used in a supertype context in the sense that every Toyota is a vehicle and can be
operated on by all operations that are applicable to vehicles.

Value sharing is a special case of parametric polymorphism. We could think of the symbol nil as
being heavily overloaded, but this would be some strange kind of open-ended overloading, as nil is a valid
element of an infinite collection of types which haven' t even been declared yet. Moreover, all the uses of nil
denote the same value, which is not the common case for overloading. We could also think that there is a
different nil for every type, but all the nil' s have the same representation and can be identified. The fact that
an object having many types is uniformly represented for all types is characteristic of parametric
polymorphism.

How do these relaxed forms of typing relate to polymorphism? As is implicit in the choice of names,
universal polymorphism is considered true polymorphism, while ad-hoc polymorphism is some kind of
apparent polymorphism whose polymorphic character disappears at close range. Overloading is not true
polymorphism: instead of a value having many types, we allow a symbol to have many types, but the values
denoted by that symbol have distinct and possibly incompatible types. Similarly, coercions do not achieve
true polymorphism: an operator may appear to accept values of many types, but the values must be
converted to some representation before the operator can use them; hence that operator really works on
(has) only one type. Moreover, the output type is no longer dependent on the input type, as is the case in
parametric polymorphism.

In contrast to overloading and coercion, subtyping is an example of true polymorphism: objects of a
subtype can be uniformly manipulated as if belonging to their supertypes. In the implementation, the
representations are chosen very carefully, so that no coercions are necessary when using an object of a
subtype in place of an object of the supertype. In this sense the same object has many types (for example, in
Simula a member of a subclass may be a longer memory segment than a member of its superclass, and its
initial segment has the same structure as the member of the superclass). Similarly, operations are careful to
interpret the representations uniformly so that they can work uniformly on elements of subtypes and
supertypes.

Parametric polymorphism is the purest form of polymorphism: the same object or function can be
used uniformly in different type contexts without changes, coercions or any kind of run-time tests or special
encodings of representations. However, it should be noted that this uniformity of behavior requires that all
data be represented, or somehow dealt with, uniformly (e.g., by pointers).

The four ways of relaxing monomorphic typing discussed thus far become more powerful and
interesting when we consider them in connection with operators, functions and procedures. Let us look at
some additional examples. The symbol + could be overloaded to denote at the same time integer sum,
real sum, and string concatenation. The use of the same symbol for these three operations reflects an
approximate similarity of algebraic structure but violates the requirements of monomorphism. The
ambiguity can usually be resolved by the type of the immediate operands of an overloaded operator, but this
may not be enough. For example, if 2 is overloaded to denote integer 2 and real 2.0, then 2+2 is still
ambiguous and is resolvable only in a larger context such as assignment to a typed variable. The set of
possibilities can explode if we allow user-defined overloaded operators.

Algol 68 is well known for its baroque coercion scheme. The problems to be solved here are very
similar to overloading, but in addition coercions have run-time effects. A two-dimensional array with only
one row can be coerced to a vector, and a vector with only one component can be coerced to a scalar. The
conditions for performing a coercion may have to be detected at run time, and may actually arise from
programming errors, rather than planning. The Algol 68 experience suggests that coercions should generally
be explicit, and this view has been taken by many later language designs.

Inclusion polymorphism can be found in many common languages, of which Simula 67 is the earliest
example. Simula' s classeare user-defined types organized in a simple inclusion (or inheritance) hierarchy
where every class has a unique immediate superclass. Simula' s objects and procedures are polymorphic
because an object of a subclass can appear wherever an object of one of its superclasses is required.
Smalltalk [Goldberg 83], although an untyped language, also popularized this view of polymorphism. More
recently, Lisp Flavors [Weinreb 81] (untyped) have extended this style of polymorphism to multiple
immediate superclasses, and Amber (typed) [Cardelli 85] further extends it to higher-order functions.

The paradigmatic language for parametric polymorphism is ML [Milner 84], which was entirely built
around this style of typing. In ML, it is possible to write a polymorphic identity function which works for
every type of argument, and a length function which maps a list of arbitrary element type into its integer
length. It is also possible to write a generic sorting package that works on any type with an ordering
relation. Other languages that used or helped develop these ideas include CLU [Liskov 81], Russell
[Demers 79, Hook 84], Hope [Burstall 80], Ponder [Fairbairn 82] and Poly [Matthews 85].

Finally, we should mention generic procedures of the kind found in Ada, which are parametrized
templates that must be instantiated with actual parameter values before they can be used. The



polymorphism of Ada' s generic procedures is similar to the parametric polymorphism of languages like
ML, but is specialized to particular kinds of parameters. Parameters may be type parameters, procedure
parameters, or value parameters. Generic procedures with type parameters are polymorphic in the sense that
formal type parameters can take different actual types for different instantiations. However, generic type
polymorphism in Ada is syntactic since generic instantiation is performed at compile time with actual type
values that must be determinable (manifest) at compile time. The semantics of generic procedures is macro-
expansion driven by the type of the arguments. Thus, generic procedures can be considered as abbreviations
for sets of monomorphic procedures. With respect to polymorphism, they have the advantage that
specialized optimal code can be generated for the different forms of inputs. On the other hand, in true
polymorphic systems code is generated only once for every generic procedure.

1.3. The Evolution of Types In Programming Languages

In early programming languages, computation was identified with numerical computation and values
could be viewed as having a single arithmetic type. However, as early as 1954, Fortran found it convenient
to distinguish between integers and floating-point numbers, in part because differences in hardware
representation made integer computation more economical and in part because the use of integers for
iteration and array computation was logically different from the use of floating point numbers for numerical
computation.

Fortran distinguished between integer and floating point variables by the first letter of their names.
Algol 60 made this distinction explicit by introducing redundant identifier declarations for integer real and
Boolean variables. Algol 60 was the first significant language to have an explicit notion of type and
associated requirements for compile time type checking. Its block-structure requirements allowed not only
the type but also the scope (visibility) of variables to be checked at compile time.

The Algol 60 notion of type was extended to richer classes of values in the 1960s. Of the numerous
typed languages developed during this period, PL/I, Pascal, Algol 68, and Simula, are noteworthy for their
contributions to the evolution of the concept of type.

PL/T attempts to combine the features of Fortran, Algol 60, Cobol, and Lisp. Its types include typed
arrays, records, and pointers. But it has numerous type loopholes, such as not requiring the type of values
pointed to by pointer variables to be specified, which weaken the effectiveness of compile-time type
checking.

Pascal provides a cleaner extension of types to arrays records and pointers, as well as user-defined
types. However, Pascal does not define type equivalence, so that the question of when two type expressions
denote the same type is implementation-dependent. There are also problems with type granularity. For
example, Pascal' s notion of array type, which includes the array bounds as part of the type, is too restrictive
in that procedures that operate uniformly on arrays of different dimensions cannot be defined. Pascal leaves
loopholes in strong type specification by not requiring the full type of procedures passed as parameters to be
specified, and by allowing the tag field of variant records to be independently manipulated. The ambiguities
and insecurities of the Pascal type system are discussed in [Welsh 77].

Algol 68 has a more rigorous notion of type than Pascal, with a well-defined notion of type
equivalence (structural equivalence). The notion of type (mode in Algol 68) is extended to include
procedures as first-class values. Primitive modes include int, real, char, bool, string, bits, bytes, format,
file, while mode constructors (type constructors) include array, struct, proc, union, and ref for respectively
constructing array types, record types, procedure types, union (variant) types, and pointer types. Algol 68
has carefully defined rules for coercion, using dereferencing, deproceduring, widening, rowing, uniting, and
voiding to transform values to the type required for further computation. Type checking in Algol 68 is
decidable, but the type-checking algorithm is so complex that questions of type equivalence and coercion
cannot always be checked by the user. This complexity was felt by some to be a flaw, resulting in a reaction
against complex type systems. Thus, later languages, like Ada, had simpler notion of type equivalence with
severely restricted coercion.

Simula is the first object-oriented language. Its notion of type includes classes whose instances may
be assigned as values of class-valued variables and may persist between execution of the procedures they
contain. Procedures and data declarations of a class constitute its interface and are accessible to users.
Subclasses inherit declared entities in the interface of superclasses and may define additional operations and
data that specialize the behavior of the subclass. Instances of a class are like data abstractions in having a
declarative interface and a state that persists between invocation of operations, but lack the information-
hiding mechanism of data abstractions. Subsequent object-oriented languages like Smalltalk and Loops
combine the class concept derived from Simula with a stronger notion of information hiding.

Modula-2 [Wirth 83] is the first widespread language to use modularization as a major structuring
principle (these ideas were first developed in Mesa). Typed interfaces specify the types and operations
available in a module; types in an interface can be made opaque to achieve data abstraction. An interface
can be specified separately from its implementation, thereby separating the specification and
implementation tasks. Block-structured scoping, preserved within modules, is abandoned at a more global
level in favor of flexible inter-module visibility rules achieved by import and export lists. Module interfaces
are similar to class declarations (except for the above-mentioned scoping rules), but unlike class instances,
module instances are not first-class values. A linking phase is necessary to interconnect module instances
for execution; this phase is specified by the module interfaces but is external to the language.

ML has introduced the notion of parametric polymorphism in languages. ML types can contain type
variables which are instantiated to different types in different contexts. Hence it is possible to partially
specify type information and to write programs based on partially specified types which can be used on all



the instances of those types. A way of partially specifying types is just to omit type declarations: the most
general (less specific) types which fit a given situation are then automatically inferred.

The above historical framework provides a basis for a deeper discussion of the relations between
types, data abstraction, and polymorphism in real programming languages. We consider the untyped data
abstractions (packages) of Ada, indicate the impact on methodology of requiring data abstractions to have
type and inheritance, discuss the interpretation of inheritance as subtype polymorphism, and examine the
relation between the subtype polymorphism of Smalltalk and the parametric polymorphism of ML.

Ada has a rich variety of modules, including subprograms to support procedure-oriented
programming, packages to support data abstractions, and tasks to support concurrent programming. But it
has a relatively weak notion of type, excluding procedures and packages from the domain of typed objects,
and including task types relatively late in the design process as an afterthought. Its choice of name
equivalence as type equivalence is weaker than the notion of structural equivalence used in Algol 68. Its
severe restriction against implicit coercion weakens its ability to provide polymorphic operations applicable
to operands of many types.

Packages in Ada have an interface specification of named components that may be simple variables,
procedures, exceptions, and even types. They may hide a local state either by a private data type or in the
package body. Packages are like record instances in having a user interface of named components. Ada
packages differ from records in that record components must be typed values while package components
may be procedures, exceptions, types, and other named entities. Since packages are not themselves types
they cannot be parameters, components of structures, or values of pointer variables [Wegner 83]. Packages
in Ada are second-class objects while class instances in Simula or objects in object-oriented languages are
first-class objects.

The differences in behavior between packages and records in Ada is avoided in object-oriented
languages by extending the notion of type to procedures and data abstractions. In the context of this
discussion it is useful to define object-oriented languages as extensions of procedure-oriented languages
that support typed data abstractions with inheritance. Thus we say that a language is object-oriented iff it
satisfies the following requirements:

- It supports objects that are data abstractions with an interface of named
operations and a hidden local state

- Objects have an associated object type

- Types may inherit attributes from supertypes

These requirements may be summarized as:
object-oriented = data abstractions + object types + type inheritance

The usefulness of this definition may be illustrated by considering the impact of each of these
requirements on methodology. Data abstraction by itself provides a way of organizing data with associated
operations that differs considerably from the traditional methodology of procedure- oriented programming.
The realization of data abstraction methodology was one of the primary objectives of Ada, and this
methodology is described at length in the Ada literature in publications such as [Booch 83]. However Ada
satisfies only the first of our three requirements for object-oriented programming and it is interesting to
examine the impact of object types and inheritance on data abstraction methodology [Hendler 86].

The requirement that all objects have a type allows objects to be first-class values so that they can be
managed as data structures within the language as well as used for computation. The requirement of type
inheritance allows relations among types to be specified. Inheritance may be viewed as a type composition
mechanism which allows the properties of one or more types to be reused in the definition of a new type.
The specification B inherits A may be viewed as an abbreviation mechanism which avoids redefining the
attributes of type A in the definition of type B. However, inheritance is more than a shorthand, since it
imposes structure among a collection of related types that can greatly reduce the conceptual complexity of a
system specification. This is illustrated by the Smalltalk object hierarchy in [Goldberg 83].

The Smalltalk object hierarchy is a description of the Smalltalk programming environment in
Smalltalk. It is conceptually similar to the Lisp apply function which describes the Lisp language interpreter
in Lisp, but is a great deal more complex. It describes a collection of over 75 related system object types by
an inheritance hierarchy. The object types include numerical, structured, input-output, concurrent, and
display objects. The object hierarchy carefully factors out properties common to numeric objects into the
supertype Number. It factors out properties common to different kinds of structured objects into the
supertype Collection. It further factors out properties common to numbers, collections, and other kinds of
objects into the supertype Object. In doing this the collection of over 75 object types that comprise the
Smalltalk environment is described as a relatively simple structured hierarchy of object types. The
shorthand provided by the object hierarchy in reusing superclasses whose attributes are shared by
subclasses is clearly incidental to the conceptual parsimony achieved by imposing a coherent structure on
the collection of object types.

The Smalltalk object hierarchy is also significant as an illustration of the power of polymorphism. We
may characterize a polymorphic function as a function applicable to values of more than one type and
inclusion polymorphism as a relation among types which allows operations to be applied to object of
different types related by inclusion. Objects are seen as collections of such polymorphic operations



(attributes). This view emphasizes the sharing of operations by operands of many types as a primary feature
of polymorphism.

The Smalltalk object hierarchy realizes polymorphism in the above sense by factoring out attributes
common to a collection of subtypes into a supertype. Attributes common to numerical types are factored out
into the supertype Number. Attributes common to structured types are factored out into the supertype
Collection. Attributes common to all types are factored out into the supertype Object. Thus polymorphism
is intimately related to the notion of inheritance, and we can say that the expressive power of object-
oriented type systems is due in large measure to the polymorphism they facilitate.

In order to complete our discussion of the evolution of types in programming languages we examine
the type mechanisms of ML [Milner 84]. ML is an interactive functional programming language in which
type specifications omitted by the user may be reintroduced by type inference.If the user enters "3+4" the
system responds "7:int", computing the value of the expression and inferring that the operands and the value
are of type int. If the user enters the function declaration "fun f x = x+1" the system responds "f:int—int",
defining a function value for f and inferring that it is of type "int—int". ML supports type inference not
only for traditional types but also for parametric (polymorphic) types, such as the length function for lists. If
"fun rec length x = if x = nil then 0 else 1+length(tail(x));" is entered, ML will infer that "length" is a
function from lists of arbitrary element type to integers (Ilength: 'a list — int). If the user then enters
"length[1;2;3]", applying length to a list of integers, the system infers that length is to be specialized to the
type "int list — int" and then applies the specialized function to the list of integers.

When we say that a parametric function is applicable to lists of arbitrary type we really mean that it
may be specialized by (implicitly or explicitly) providing a type parameter T, and that the specialized
function may then be applied to the specialized operands. There is an important distinction between the
parametric function length for lists of arbitrary type and the specialized function for lists of type int.
Functions like length are applicable to lists of arbitrary type because they have a uniform parametric
representation that allows them to be specialized by supplying a type parameter. This distinction between a
parametric function and its specialized versions is blurred in languages like ML, because type parameters
omitted by the user are automatically reintroduced by the type inference mechanism.

Supertypes in object-oriented languages may be viewed as parametric types whose parameter is
omitted by the user. In order to understand the similarity between parametric types and supertypes it is
useful to introduce a notation where supertype parameters must be explicitly supplied in specializing a
supertype to a subtype. We shall see below that Fun has explicit type parameters for both parametric types
and supertypes in order to provide a uniform model for both parametric and subtype polymorphism. This
results in a uniform treatment of type inference when parameters are omitted in parametric types and
supertypes.

1.5. Type Expression Sublanguages

As the set of types of a programming language becomes richer, and its set of definable types becomes
infinite, it becomes useful to define the set of types by a type expression sublanguage. The set of type
expressions of current str