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Abstract. The last decales have seen the emergence of the sea of objects para-
digm for structuring complex distributed systems on workstations and locd area
networks. In thisapproach, applications and system services are composed of and
communicate among themselves through reliable and transparently accesshle
objed interfaces, leading to the interaction of hundred or thousands of unstruc-
tured dbjeds.

This approach has lead to major progress in software composability and re-
liability. Unfortunately, it is based on a number of assumptions that do not hold
on wide aeanetworks. There, accessto resourcesisintrinsically unreliable (be-
cause of failure, congestion, voluntary disconnected operation, etc.) and not
transparent (because of variations in latency and bandwidth, hardware and soft-
ware mohility, and the presenceof firewall s). These characteristicsare so radicd-
ly different from the arrent computational norm that they amount to a new
model of computation.

We discussthe challenges of computation on wide aea networks. Our ap-
proach refleds the intuition that, to function satisfactorily on a wide aea net-
work, the sea of objects must be partitioned and made hierarchicd, internally
mobil e, and seaure. This paper is an abridged version of [3].

1 Introduction

The Internet and the World-Wide-Web provide acomputational infrastructure that
spansthe planet. It is appeding to imagine writing programs that exploit this global in-
frastructure. Unfortunately, the Web viol ates many famili ar assumptions about the be-
havior of distributed systems, and demands novel and spedalized programming
techniques. In particular, three phenomenathat remain largely hidden in locd areanet-
work architedures becme readily observable on the Web:

e (A) Virtual locations. Because of the presenceof potential attadkers, barriersare
ereded between mutually distrustful administrative domains. Therefore, a pro-
gram must be avare of whereit is, and of how to move or communicate between
different domains. The existence of separate alministrative domains induces a
notion of virtual locaions and of virtual distance between locations.

« (B) Physical locations. On a planet-size structure, the speed o light becomes
tangible. For example, aprocedure cdl to the antipodes requires at least 1/10 o
aseoond, independently of future improvementsin networking technology. This
absolute lower bound to latency induces anotion of physicd locations and phys-
icd distance between locations.
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* (C) Bandwidth fluctuations. A global network is susceptible to unpredictable mn-
gestion and partitioning, which result in fluctuations or temporary interruptions of
bandwidth. Moreover, mobile devices may perce ve bandwidth changes as a mnse-
guence of physicd movement. Programs need to be ale to observe and read to
these fluctuations.

These feaures may interad among themselves. For example, bandwidth fluctuations may
be related to physicd locaion because of different patterns of day and night network utili -
zdion, and to virtual locaion because of authentication and encryption aaoss domain
boundaries. Virtual and physicd locations are often related, but need not coincide.

In addition, another phenomenon keames unobservable on the Web:

* (D) Failures. Onthe Web, thereisno pradicd upper bound to communication de-
lays. In particular, fail ures become indistinguishable from long delays, and thus un-
detedable. Failure rewmvery becomes indistinguishable from intermittent
connedivity. Furthermore, delays (and, implicitly, fail ures) are frequent and unpre-
dictable.

These four phenomena determine the set of observables of the Web: the events or
states that can be in principle deteded. Observables, in turn, influence the basic building
blocks of computation. In moving from locd areanetworksto wide aea networks, the set
of observables changes, and so doesthe cmputational model, the programming constructs,
and thekind of programsone caxwrite. The question of how to “program the Web” reduces
to the question of how to program with the new set of observables provided by the Web.

At least one general technique has emerged to cope with the observables charaderistic
of awide aeanetwork such asthe Web. Mobile computationisthe notion that running pro-
grams ned not be forever tied to a single network node. Mobile cmputation can ded in
original ways with the phenomena described above:

* (A) Virtual locations. Given adequate trust mecdhanisms, mobile cmmputations can
cross barriers and move between virtual locations. Barriers are designed to impede
access, but when codeisall owed to crossthem, it can accesslocd resourceswithout
the impediment of the barriers.

» (B) Physical locations. Mobil e ammputations can move between physicd locaions,
turning remote cadlsinto locd cdls, and thus avoiding the latency limit.

« (C) Bandwidth fluctuations. Mobile mmputations can read to bandwidth fluctua-
tions, either by moving to a better-placal location, or by transferring code that es-
tablishes a austomized protocol over a cnnedion.

» (D) Failures. Mobile ammputations can run away from anticipated fail ures, and can
move aound presumed failures.

Mobile computation is also strongly related to recent hardware alvances, since om-
putations move implicitly when carried on partable devices. In this sense, we canot avoid
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the issues raised by mobile computation: more than an avant-garde software tedhnique, it
is an existing hardware redity.

2 Three Mental Images

We begin by comparing and contrasting threemental images; that is, three abstraded views
of distributed computation. From the differences between these mental images we derive
the need for new approaches to global computation.

2.1 Local Area Networks

The first mental image crresponds to the now standard, and quickly becoming olsol ete,
model of computation over locd areanetworks.

When workstationsand PCs garted replad ng mainframes, locd networkswereinvent-
ed to connect autonomous computers for the purpose of resource sharing. A typicd locd
areanetwork consists of a @ll edion of computers of about the same power (withina couple
of hardware generations) and of network links of about the same bandwidth and latency.
This environment is not always completely uniform: spedalized machines may operate &
servers or as engineeing workstations, and spedalized subnetworks may offer spedal ser-
vices. Still, by and large, the structure of aLAN can be depicted as the uniform network of
nodes (computers) and links (connedions) in Mental Image 1:

Administrative Domain

. ~

\ \—

Mental Image 1: L ocal Area Network

A main property of such a network is its predictability. Communicéion delays are
bounded, and processor response times can be estimated. Therefore, link and process fail -
ures can be deteded by time-outs and by “pinging” nodes.

Another important property of locd areanetworksisthat they are usually well-admin-
istered and, in recent times, proteded against attadk. Network administrators have the task
of kegping the network running and proted it against infiltration. In the picture, the bound-
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ary line represents an administrative domain, and the flames represent the protedion pro-
vided by a firewall. Protedion is necessary becaise locd area networks are rarely
completely disconneded: they usually have slower links to the outside world, which are
however enoughto make aministrators nervous about infiltration.

The achitedure of locd areanetworksis very diff erent from the older, highly central-
ized, mainframe achitedure. This difference and the difficultiesimplied byit, resulted in
the amergence of novel distributed computing techniques, such as remote-procedure-cal,
client-server architedure, and d stributed objed-oriented programming. The combined aim
and effed of thesetedniquesisto make the programming and appli cation environment sta-
ble and uniform (asin mainframes). In particular, the network topology is carefully hidden
so that any two computers can be mnsidered as lying one logicd step apart. Moreover,
computers can be ansidered immobile; for example, they usually preserve their network
address when physicdly moved.

Even in this relatively static environment, the notion d mobility has gradualy ac
quired prominence, in avariety of forms. Control mobility, found in RPC (Remote Proce-
dure Call) and RMI (Remote Method Invocation) mechanisms, is the notion that a thread
of control moves (in principle) from one madine to another and badk. Data mobility is
adhieved in RPC/RMI by lineaizing, transporting, and reconstructing data acoss ma-
chines. Link mohility is the aility to transmit the end-points of network channels, or re-
mote objed proxies. Objed mohility is the aility to move objeds between dfferent
servers, for example for load balancing purposes. Finally, in Remote Exeaution, a compu-
tations can be shipped for exeaution to a server (thisis an ealy version of code mobility,
proposed as an extension of RPC [13]).

In recant yeas, distributed computing has been endowed with greaer mobility prop-
erties and easier network programming. Techniques such as Objed Request Brokers have
emerged to abstrad over the locaion of objeds providing certain services. Code mohility
has emerged in Tcl and other scripting languages to control network applicetions. Agent
mobility has been pioneeed in Telescript [14], aimed towards a uniform (although wide
area) network of services. Closure mohility (the mobility of adive axd conneded entities)
has been investigated in Obliq [4].

In duetime, locd areanetwork techniqueswould have smoothly and gradually evolved
towards deployment on wide aeanetworks, e.g. as was explicitly attempted by the COR-
BA effort. But, suddenly, aparticular wide aeanetwork came dongthat radicdly changed
the fundamental assumptions of distributed computing and its paceof progress: the Web.

2.2 Wide Area Networks

Global computing evolved over the span of afew decales in the form of the Internet. But
it was not until the amergence of the Web that the peauliar charaderistics of the Internet
were exposed in away that anybody could verify with just afew mouse dicks. For clarity
and simplicity we will refer to the Web as the primary global information infrastructure,
although it was certainly not the first one.
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We should remember that the notions of aglobal address space ad of aglobal filesys-
tem have been popular at times as extensions of the mainframe architedure to wide aea
networks. The first obvious feaure of the Web isthat, althoughit forms aglobal computa-
tional resource, it is nothing like aglobal mainframe, nor an extension o it. The Web does
not support a global (updatable) file system and, although it supports a global addressng
mechanism, it does not guaranteethe integrity of addressing. The Web has no single reli-
able cmmponent, but it also has no singlefail ure paint; it is definitely not the centralized all -
powerful mainframe of 1950's siencefiction rovelsthat could be shut off by attadking its
single “brain”.

The fad that the Web is not a mainframe is not a big concern; we have dready suc-
cessfully tadkled distributed computing based on LANs. More distressing is the fad that
the Web does not behave like aLAN either. Many proposals have anmerged alongthe lines
of extending LAN concepts to a global environment; that is, in turning the Internet into a
distributed address gace or a distributed file system. However, since the global environ-
ment does not have the stability properties of a LAN, this can be adieved only by intro-
ducing redundancy (for reliability), replication (for quality of service), and scdability (for
management) at many different levels. Things might have esolved in thisdiredion, but this
isnoat theway the Web cameto be. The Web is, amost by definition, unreli able, unpredict-
able, and unmanageable s awhole, and was not designed with LAN-like guarantees of ser-
vice

Mental Image 2: Wide Area Network (for example, the Web)

Therefore, the main problem with the Web is that it is not just abig LAN, otherwise,
modulo issues of scde, wewould already know how to ded withit. There ae several ways
inwhich the Webisnot abig LAN, and we will describe them shortly. But the fundamental
reason isthat, unlike aL AN, the Web isnot centrally administered. Instea, it isadynamic
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colledion of countlessindependent administrative domains, all widely different and mutu-
aly distrustful. Thisis represented in Mental Image 2.

In that picture, computers differ grealy in powver and avail abili ty, whil e network links
differ grealy in cagpadty and reliability. Large physicd distances have visible dfeds, and
so do time zones. The achitedure of awide aeanetwork is yet again fundamentally dif-
ferent from that of alocd areanetwork. Most prominently, the network topology isdynam-
ic and non-trivial. Computers bemme intrinsicdly mobile: they require different
addressing when physicdly moved across administrative boundaries. Techniques based on
mobili ty become more important and sometimes essential. For example, mobile Java g-
plets provided the first disciplined mechanism for running code éle to (and all owed to)
systematicdly penetrate other people’s firewalls. Countless projeds have amerged in the
last few yeas with the am of supporting mohile mmputation over wide aeas, and are be-
ginning to be mnsolidated.

At this point, our architedural goal might be to devise techniques for managing com-
putation over an urreliable mlledion of far-flung computers. However, thisis not yet the
full picture. Not only are network links and nodeswidely dispersed and unreli able; they are
not even liable to stay put, as we discuss next.

2.3 Mobile Computing

A different global computing paradigm has been evolving independently of the Web. In-
stead of conneding together all the LANsin theworld, ancther way of extending the reach
of aLAN isto moveindividua computers and other gadgets from one LAN to ancther, dy-
namicdly.

We discussd in the Introduction how the main characteristics of the Web point to-
wards mobile mmputation. However, that is meant as mobile cmputation over afixed (al-
though possibly flaky) network. A more interesting picture anerges when the very
components of the network can move aout. Thisisthe field of mobile computing. Today,
laptops and personal organizers routinely move aout; in the future entire networkswill go
mobile (asin IBM’s Personal AreaNetwork). Existing examples of this kind of mohility
include: a smart card entering a network computer slot; an adive badge entering aroom; a
wireless PDA or laptop entering a buil ding; a mobile phone entering a phone cédl.

We oould draw a picture similar to Mental Image 1, but with mobile devices moving
within the confines of asingle LAN. This nation of a dynamic LAN is afairly minor ex-
tension of the basic LAN concepts, and presents few conceptual problems (wireless LANs
are already common). A much more interesting picture anerges when we think of mobile
gadgets over a WAN, becaise administrative boundaries and multiple acces pathways
then interad in complex ways, as anybody who travels with alaptop knows all too well.

Mental Image 3 focuses on two domains: the United States and the European Union,
ead enclosed by a politicd boundary that regulates the movement of people and comput-
ers. Within a pdliticd boundary, private mmpanies and public agencies may further regu-
late the flow of people and devices aaoss their doors. Over the Atlantic we see athird
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domain, representing Air France flight 81 travelling from San Francisco to Paris. AF81 is
avery adive mobile computational environment: it isfull of people workingwith their [ap-
tops and possibly conneding to the Internet through airphones. (Not to mention the hun-
dreds of computers that control the drplane and let it communicae with avarying stream
of ground stations.)

*

Mental Image 3: Mobile Computing

Abstrading a bit from people and computation devices, we see here ahierarchy of
boundaries that enforce controls and require permissions for crossing. Passports are re-
quired to cross politi ca boundaries, tickets are required for airplanes, and spedal cleaanc-
es are required to enter (and exit!) agencies such as the NSA. Sometimes, whole mobile
boundaries crossin and out of other boundaries and simil arly need permissons, as the mo-
bile environment of AF81 neeads permisgon to enter an airspace On the other hand, once
an entity has been allowed aadossa boundary, it is fairly freeto roam within the wnfines
of the boundary, until ancther boundary needs to be aossed.

2.4 General Mobility

We have described two different notions of mobility. The first, mobile computation, hasto
do with virtual mobility (mobil e software). The second, mobile computing, has to do with
physicd mobility (mobil e hardware). These two fields are today almost disconneded, the
first dominated by a software cmmunity, and the second dominated by a hardware com-
munity. However, the borders between virtual and physicd mobility are fuzzy, and even-
tually we will haveto trea all kinds of mobility in auniform way. Here ae two examples
where the diff erent forms of mohility interad.

The first example is one of virtual mohility achieved by physicd means. Consider a
software gent in alaptop. The aent can move by propagating over the network, but can
also move by being physicdly transported with the laptop from one location to another. In
the first case, the agent may have to undergo seaurity chedks (e.g., bytecode verification)
when it crosses administrative domains. In the second case the agent may have to undergo
seaurity cheds (e.g., virus detedion) when the laptop is physicdly allowed inside anew
administrative domain. Do we need two completely separate seaurity infrastructures for
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these two cases, or can we somehow find a common principle?A plausible seaurity policy
for a given damain would be that a physicd barrier (a building door) should provide the
same seaurity guarantees as a virtual barrier (afirewall).

The second example is one of physicd mobhility achieved by virtual means. Software
existsthat all ows remote control of a mmputer, by bringing the screen of aremote comput-
er onalocd screen. The providers of such software may claim that thisis just as good as
moving the mmputer physicdly, e.g. to accesitslocd data. Moreover, if the remote aom-
puter has a network connedion, thisis also equivalent to “stringing wire” from the remote
locdion, since the remote network is now locdly acaessible. For example, using remote
control over a phone line to conned from home to work where ahigh-bandwidth Internet
connedion is avail able, is almost as good as having a high-bandwidth Internet connedion
brought into the home.

The other side of the in of being mobileis of becoming disconneded or intermittent-
ly connected. Even barring flaky networks, intermittent connedivity can be caised by
physicd movement, for example when a wireless user moves into some form of Faraday
cage. Moreinterestingly, intermittent connedivity may be caused by virtual movement, for
example when an agent moves in and out of an administrative domain that does not all ow
communicaion. Neither caseisredly afailure of the infrastructure; in both cases, lack of
connedivity may in fad be adesirable seaurity feaure. Therefore, we have to assume that
intermittent connedivity, caused equivalently by physicd or virtual means, is an essential
feature of mobility.

In the future we should be prepared to seeincreased interadions between virtual and
physicd mobility, and we should develop frameworks where we can discuss and manipu-
late these interadions.

2.5 Barriersand Action-at-a-Distance

The unifying difficulty in both mobile computing and mobile computationisthe prolifera-
tion of barriers, and the problemsinvolved in crossing them. This central difficulty implies
that we must regard barriers as fundamental fedures of our computational models. This
seams contrary to the usual trend.

Access barriers have aisen many times in the history of computing, and ane of the
main tasks of computer science has been to “abstrad them away”, often by the proverbial
additional level of indiredion. For example, physicd memory boundariesare drcumvented
by virtual memory; address spaceboundaries are drcumvented by network proxies; fire-
wall boundaries are drcumvented by seaure tunnels and agent sandboxing. Unfortunately,
when barriers are not purely technologicd it is not possible to completely abstrad them
away. The qossing of administrative barriers must be performed by bureaucratic opera-
tions, such as exhibiting equipment removal passes and export licences.

Therefore, administrative barriers constitute afundamental changeto the way we am-
pute. Let’ sreview some historical scenariosthat, because of barriers, have now become un-
realizable computing utopias.
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In the ealy days of the Internet, any computer could talk to any other computer by
knowing its|P number. We can now forget about flat | P addressing and transparent routing:
routers and firewalls effedively hide cetain IP addresses from view and make them un-
reachable by dired means.

In the ealy days of programming languages, people ewvisioned a universal address
spacein which al programswould live and share data, possibly with world-wide garbage-
colledion, and possibly with strong typing to guaranteethe integrity of pointers. We can
now forget about universal addressing: athough pdnters are dlowed aaossmachines on
aLAN (by retwork proxies), they are generally disallowed aaoss firewalls. Similarly, we
can forget about transparent distributed dbjed systems: some network objeds will be kept
well hidden within certain domains, and reaching them will require dfort.

Inthe ealy days of mobile agents, people envisioned agents moving fredy aaossthe
network on behalf of their owners. We can now forget about this kind of freeroaming. If
sites do not trust agents they will not alow them in. If agents do not trust sites to exeaute
them fairly, they will not want to visit them.

In general, we can forget about the nation of action-at-a-distance mmputing: theidea
that resources are avail able transparently at any time, no matter how far away. Instead, we
have to get used to the notion that movement and communication are step-by-step adivi-
ties, and that they are visibly so: the multiple steps involved cannot be hidden, coll apsed,
or rendered atomic.

The adion-at-a-distance paradigm is still prevalent within LANS, and this is another
reason why LANSs are different from WANSs, where such an assumption cannot hold.

2.6 Why aWAN isnot abigLAN

We have dready discussed in the Introduction how a WAN exhibits a diff erent set of ob-
servables than a LAN. But could ane emulate aLAN on top of a WAN, restoring a more
familiar set of observables, and therefore amore famili ar set of programming tedhniques?
If this were possible, we auld then go on and program the Internet just like we now pro-
gramaLAN.

To turn aWAN into a LAN we would have to hide the new observables that a WAN
introduces, and we would have to reved the observables that a WAN hides. These tasks
ranges from difficult, to intolerable, to impassble. Referringto the dassificationin the In-
troduction, we would have to achieve the foll owing.

(A) Hiding virtual locations. We would have to devise aseaurity infrastructure that
makes navigation aaoss multiple aiministrative domains painless and transparent (when
legitimate). Although agrea ded of cryptographic technology is avail able, there might be
impossibilit y results lurking in some arners. For example, itisfar from clea whether one
can in principle guaranteethe integrity of mobile cmmputations against hostile or unfair
servers[12]. (This can be solved on aLAN by having all computers under physica super-
vision.)
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(B) Hiding physical locations. One canot “hide” the speed of light; tedhniques such
as cacing and replicaion may help, but they cannot fool processes that attempt to perform
long-distancered-time cntrol and interadion. In principle, one muld make dl delays uni-
form, so that programswould na behave differently in diff erent places. Ultimately thiscan
be adieved only by slowing down the entire infrastructure, by embedding the maximal
propagationdelay in all communications. (Thiswould be éout 1/10 of aseaond onthe sur-
face, but would grow dramaticaly as the Web is extended to satellite communication, or-
bital stations, and further away.)

(C) Hiding bandwidth fluctuations. It is possble to introduce service guarantees in
the networking infrastructure, and therefore diminate bandwidth fluctuations, or reduce
them below certain thresholds. However, in overload situations this has the only effed of
turning network congestion into access failures, which brings us to the next point.

(D) Revealing failures. We would have to make fail ures as observable @ on a LAN.
Thisis where we runinto fundamental trouble. A basic result in distributed systems states
that we cannot achieve distributed consensus (such as agredng on which nodes have fail ed)
in a system consisting of a allection of asynchronous processes [10]. The Web is such a
system: we can make no assumption about the relative speed of processors (they may be
overloaded, or temporarily disconneded), about the speed of communication (the network
may be angested or partitioned), about the order of arrival of messages, or even about the
number of processesinvolved in a mmputation. In these drcumstances, it isimpossible to
detea the failure of processors or of network nodes or links: any consensus algorithm can
be delayed indefinitely. The cmmon partial solutions for this unsolvable problem are to
dictate some degree of synchrony and fail ure detedion. These solutions work well on a
LAN, but they seem unlikely to apply to WANs simply because individual users may arbi-
trarily dedde to turn off their processors without warning, or take them into unreachable
places. Other partial solutions involve multiple-round broadcast-based probabilistic algo-
rithms [2] which might be expensive on a WAN in terms of communication load, and
would be subjed to light-speed delays. Moreover, it is difficult to talk about the fail ure of
processors that are invisible becaise they are hidden behind firewalls, and yet take part in
computations. Therefore, it seems unlikely that techniques developed to ded with asyn-
chrony in operating systems and LANs can be successfull y applied to aWAN such asthe
Web in full generality. The Web isan inherently asynchronous s/stem, and the impossibil -
ity result of [10] applieswith full force

In summary: task (A) may be unsolvable for mobile ade; in any case, a hon-zero
amount of bureaucragy will always be required; task (B) is only solvable (in full) by intro-
ducing unacceptable delays; task (C) can be solved in away that reducesit to (D); task (D)
is unsolvable in principle, and probabili stic solutions run into tasks (A) and (B).

2.7 WAN Postulates

We summarizethis dion by a @lledion of postulatesthat capture the main properties of
theredity we ae interested in modeling:

10 Wednesday, April 14,1999 5:12 pm



e Separate locations exst.

« Different locations have different properties, hence both people and programs will
want to move between them.

» Barriersto mobility will be eeded to preservethe properties of certain locations.
» Some people and some programs will still need to cross those barriers.

The poaint of these postulates is to stress that mobility and barrier crossng are inevitable
reguirements of our current and future cmputing infrastructure.

The observables that are charaderistic of wide aeanetworks have the following im-
plicaions:

« Digtinct virtual locations are observed because of the existence of distinct adminis-
trative domains, which are produced by the inevitable existence of attadkers. Dis-
tinct virtual locations predude the unfettered exeaution of adions aaoss domains,
and require aseaurity model.

 Distinct physical locaions are observed, over large distances, because of the inevi-
table latency limit given bythe spead of light. Distinct physicd locdions preclude
instantaneous adion at a distance, and require amobility model.

» Bandwidth fluctuations (including hidden failures) are observed becaise of the in-
evitable exercise of freewill by network users, both in terms of communication and
movement. Bandwidth fluctuations predude reliance on response time, and require
an asynchronous communicaion model.

3 Modeling Wide Area Computation

Sedion 2was dedicaed to showing that the redity of mobile computation over a WAN
does not fall into famili ar categories. Therefore, we need to invent a new model that can
help us in understanding and eventually in taking advantage of thisredity.

3.1 Barriers

We believe that the most fundamental new nation isthat of barriers; thisisthe most prom-
inent asped of post-LAN computing environments.

Many of the basic feaures of WANSs have to dowith barriers: Locality (the existence
of different virtual or physicd locations, and the notion of being in the same or different
locaions) isinduced by atopology of barriers. Mobility is barrier crossing. Security hasto
do with the aility or inability to cross barriers. Communication is partitioned by barriers:
locd communicaion happens within barriers, while long-distance @mmunicaion is a
combination of locd communicaion and movement acossbarriers. Action at a distance
(immediate interadion aaross many barriers) is forbidden.

We have chose barriers as the most important feaure of an abstrad model of compu-
tation for wide aeanetworks, the Ambient Calculus [7], which we briefly outline.
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3.2 Ambients

The airrent literature on wide aeanetwork languages can be broadly classified into agent-
based languages (e.g., Telescript [14]), and placebased languages (e.g., Linda[8]). An am-
bient isa generalization of both notions. Like a agent, an ambient can move acossplaces
(also represented by ambients) whereit can interad with other agents. Like aplace an am-
bient supportsloca undireaded communication, and can recéve messages (al so represented
by ambients) from other places. Ambientscan be abitrarily nested, generalizing the limited
placeagent-data nesting of most agent languages, and the nesting of places allowed in
some Linda dialects.

Briefly, an ambient isaplacethat is delimited byaboundary andwhere multi-threaded
computation happens. Each ambient has a name, a @lledion of locd processs, anda ol-
ledion of subambients. Ambients can movein and out of other ambients, subjed to capa-
biliti es that are associated with ambient names. Ambient names are unforgeéble, this faa
being the most basic seaurity property.

In further detail, an ambient has the foll owing main charaderistics.

« Anambient is abounded placewhere computation happens.

If we want to move computations easily we must be ale to determine what parts
should move. A boundary determineswhat isinside and what is outside an ambient,
and therefore determineswhat moves. A boundary implies smeflexible addressng
scheme that can denote antiti es aaoss the boundary; examples are symbadlic links,
URLSs (Uniform Resource Locaors) and Remote Procedure Call proxies. Flexible
addressing is what enables, or at least fadlit ates, mobility. It is also, of course, a
cause of problems when the aldressing links are “broken”.

« Ambients can be nested within other ambients, forming atreestructure.

As we discussed, administrative domains are (often) organized hierarchicdly. Mo-
bility is represented as navigation aaoss a hierarchy of ambients. For example, if
we want to move arunning application from work to home, the gpli caion must be
removed from an enclosing (work) ambient and inserted in a different enclosing
(home) ambient.

» Ead ambient has a mlledion of locd running processes.

A locd process of an ambient isonethat is contained in the anbient but not in any
of its sibambients. These “top level” locd processes have dired control of the am-
bient, and in particular they can instruct the anbient to move. In contrast, the locd
processes of a subambient have no drect control on the parent ambient: this helps
guaranteang the integrity of the parent.

» Ead ambient moves as awhole with al it s subcomponents.

The adivity of asinglelocd processmay, by causing movement of its parent, influ-
encethe locaion, and therefore the adivity, of other local processes and subambi-
ents. For example, if we move alaptop and recnned it to a different network, then
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all the threals, address spaces, and file systems within it move acordingly and au-
tomaticdly, and have to cope with their new surrounding. Agent mobility is a spe-
cial case of ambient mobility, since ayents are usually single-threaded. Ambients,
like agents, automaticadly carry with them a wlledion d private data & they move.

+ Eadh ambient has aname.

The name of an ambient isused to control access (entry, exit, communication, etc.).
In aredistic situation the true name of an ambient would be guarded very closely,
and only spedfic caabili ties based onthe name would be handed out.

3.3 ldeasfor Wide Area L anguages

Ambients represent our understanding of the fundamental properties of mobile mmputa-
tion over wide aeanetworks. Our final goal, though, is to program the Internet in some
convenient high-level language. Therefore, we am to find programming constructsthat are
semanticdly compatible with the anbient principles, and consequently with wide aeanet-
works.

These compatibility requirements include (A) WAN-soundness: a wide aeanetwork
language cannot adopt primitives that entail adion-at-a-distance, continued connedivity,
global consensus, or seaurity bypasses, and (B) WAN-completeness. a wide aeanetwork
language must be éle to express the behavior of web surfers and of mobile ayents and us-
ers, and of any other entiti es that routinely roam those networks.

More spedficdly, webelieve thefoll owing are necessary ingredients of wide arealan-
guages.

« Naming. Names are symbolic ways of referring to entities aaoss a barrier. Names
are detached from their corresponding entities; one may possess a name without
havingimmediate accesto any entity of that name. To enable mobility and dscon-
neded gperation, all entities acdoss a barrier should be denoted by names, not by
“hard” pointers.

* Migration. Active hardware and software components should be &le to migrate.
Migration of certain adive hardware cmponents is possible today, but the &ility
to automaticdly disconned and reconned those components to surrounding (possi-
bly multi ple) networksis not currently avail able. Migration of adive software cm-
ponents is even harder, typicdly for lack of system fadlities for migrating live
individual threads and groups of threads.

« Dynamic connectivity. A wide aeanetwork cannot be started or stopped all at once.
Therefore, it is necessary to dynamicdly conned components. This is contrary to
the aurrent prominencein programming languages of static binding, static module
compasition, and static linking. The anbient cd culus provides an example of anov-
el mixture of ordinary static scoping of hames (which enables typecheding) with
dynamic binding of operations to names (which enables dynamic linking).
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» Communication. Communication onwide aeanetworks must in general be asyn-
chronous. However, locd communication (within or even aaoss a single barrier)
can usefully be synchronous. Moreover, in the presence of mobility, it is necessary
to have some level of synchronization between communication and movement op-
erations. Thisremains an interesting design areafor mobile languages.

e Security. Seaurity abstradions should be provided at the programming-language
level, that is, above the fundamental cryptographic primitives. Programmers need to
operate with reliable high-level abstradions, otherwise subtle seaurity loopholes
can creep in. We believe that barriers are one such high-level seaurity abstraction,
which can be supported by programming constructs that can be medhanicdly ana-
lyzed (e.g., viatype systems[6]).

Summary

The ambient semantics naturally suggests unusual programming constructs that are well -
suited for wide aea @mputation. The combination of mobility, seaurity, communication,
and dynamic binding issues has not been widely explored yet at the language-designlevel,
and certainly not within a unifying semantic paradigm. We hope our unifying foundation
will fadlitate the design d such new languages.

3.4 Wide Area Challenge: A Conference Reviewing System

We mnclude with the outline of an ambitious wide aea gplication. The gplicaion de-
scribed here does nat fit well with simple-minded Web-based technology because of the
complex flow of adive cde and stateful information between different sites, and kecaise
of an essential requirement for disconneded operation. The goplicaion fitswell within the
agent paradigm, but also involvesthetraversal of multiple alministrative domains, and has
seaurity and confidentiality requirements.

Thisismeant both asan exampl e of an appli cation that could be programmed in awide

area language, and as a challenge for any such language to demonstrate its usability. We
hope that a language based on ambients or similar notions would cope well with this kind
of situation.
- Description of the problem. The problem consistsin managing a virtual program commit-
teemedingfor a omnference The basic achitedure was suggested to me by comments by
Richard Connors, as well as by my own experience with organizing program committee
meeings and with using Web-based reviewing software developed for ECOOP and other
conferences.

In the following scenario, the first occurrence of ead of the principals involved is
shown in boldface.

- Announcement. A confer ence is announced, and an eledronic submission form, signed
by the confer ence chair, is publicized.

- Submission. Each author fetchesthe submissonform, chedsthe signature of the cnfer-
ence dair, and adivates the form. Once adivated, the form adively guides most of there-
viewing process Each author fill s an instance of the form and attaches a paper. The form
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chedks that none of the required fields are |eft blank, eledronicdly signs the paper with a
signature key provided by the author, encryptsthe atached paper, and finds its way to the
program chair. The program chair coll eds the submissions forms, and gves them a de-
cryption key so that they can deaypt the atached papers and \erify the signatures of the
authors. (All following communications are signed and encrypted; we omit most of these
detail s from now on.)

- Assignment. The program chair then assigns the submissonsto the committee members,
by instructing ead submission form to generate areview for msfor ead assigned member.
The review forms incorporate the paper (this time signed by the program chair) and find
their way to the gopropriate cmmitteemembers.

- Review. Each committeemember is areviewer, and may dedde to review the paper di-
rectly, or to send it to another reviewer. The review form kegps trads of the chain of re-
viewers 9 that it can find its way badk when either completed or refused, and so that ead
reviewer can ched the work of the subreviewers. Eventually areview isfilled. The form
performsvarious consistency chedks, such as verifyingthat the asigned scoresarein range
and that no required fields are left blank. Then it finds its way badk to the program chair.

- Report generation. Once the review forms read the program chair, they become report
forms. The various report forms for ead paper merge with ead other incrementally to
form a single report form that acawmulates the scores and the reviews. The program chair
monitorsthereport form for ead paper. If the reviews are in agreement, the program chair
dedares the form an accepted paper report form, or arejected paper review form.

- Conflict resolution. If the reports are in disagreement, the program chair dedares theform
an unresolved review form. An unresolved review form circulates between the reviewers
and the program chair, acaimulating further comments, until the program chair dedaresthe
paper acceted or rejeded.

- Notification. The report form for an accepted or rejeded paper finds its way bad to the
author (minus the confidential comments), with appropriate congratulations or regrets.

- Final versions. Once it reades the aithor, an accepted paper report form spawns a final
submission form. In due time, the aithor attaches to it the final version of the paper and
signsthe copyright release notice The mmpleted final submissionsform findsitsway badk
to the program chair.

- Proceedings. The final submission forms, upon reading the program chair, merge them-
selvesinto the proceedings. The program chair chedks that all the final versions have a-
rived, sorts them into a mnference schedule, attaches a preface and lets the procealings
find their way to the mnference dair.

- Publication. The mnference dair filesthe copyright release forms, signsthe proceadings,
and posts them to public sites.

In summary, in this example, interadions between various parts of the system happen
over awide aeanetwork. The people involved may be physicdly moving during or be-
tween interaction. As they move, they may transport without warning adive parts of the
system. At other times, adive parts of the system move by their own initiative and must
find aroute to the gopropriate principals wherever they are.
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4 Conclusions

The global computationd infrastructure has evolved in fundamental ways beyond standard
notions of sequential, concurrent, and distributed computational models. The notion o am-
bients captures the structure and properties of wide aeanetworks, of mobile computing,
and of mobhile computation. The anbient cdculus [7] formalizes these nations smply and
powerfully. It supports reasoning about mobility and seaurity, and hes an intuitive graphi-
cd presentation in terms of afolder cdculus [3]. On this foundation, we can envision new
programming methodologies, libraries and languages for wide aea @mputation.
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