
Intermediate
representations

Michel Schinz
Advanced Compiler Construction – 2009-05-15

Intermediate representations

The term intermediate representation (IR) or intermediate
language designates the data-structure(s) used by the compiler
to represent the program being compiled.

Choosing a good IR is crucial, as many analyses and
transformations (e.g. optimizations) are substantially easier to
perform on some IRs than on others.

Most non-trivial compilers actually use several IRs during the
compilation process, and they tend to become more low-level
as the code approaches its final form.

2

Impact of IR on
optimizations

Example 1: constant prop.
To illustrate the impact of IR on optimizations, consider the
following simple program fragment:

x!7

...

Is it legal to perform constant propagation and blindly replace
all later occurrences of x by 7?

The answer depends on the IR:

• If the IR allows multiple assignments to the same variable,
then additional (data-flow) analyses are required to answer
the question, as x might be re-assigned later.

• However, if the IR does not allow multiple assignments to
the same variable, then yes, all occurrences of x can be
unconditionally replaced by 7!

4

Other simple optimizations
Apart from constant propagation, many simple optimizations
are made hard by the presence of multiple assignments to a
single variable:

• common-subexpression elimination, which consists in
avoiding the repeated evaluation of expressions,

• (simple) dead code elimination, which consists in
removing assignments to variables whose value is not used
later,

• etc.

In all cases, analyses are required to distinguish the various
“versions” of a variable that appear in the program.

Conclusion: a good IR should not allow multiple assignments
to a variable!

5

Example 2: inlining

Inlining (or in-line expansion) consists in replacing a call to a
function by a copy of the body of that function, with
parameters replaced by the actual arguments. It is a very
important compiler optimization, as it often opens the door to
further optimizations.

Some aspects of the intermediate representation can have an
important impact on the implementation of inlining. To
illustrate this, let us examine some problems that can occur
when performing inlining directly on the AST – a choice that
might seem reasonable at first sight.

6

Naïve inlining: problem #1

7

(define print/ret (lambda (x) (print-int x) x))

(define twice (lambda (y) (+ y y)))

(define f (lambda (z) (twice (print/ret z))))

incorrect inlining
of twice in f

(define f (lambda (z)

 (+ (print-and-ret z)

 (print-and-ret z))))

Possible solution: bind actual parameters to variables (using a
let) to ensure that they are evaluated at most once.

z gets printed
twice!

Naïve inlining: problem #2

8

(define first (lambda (x y) x))

(define print/ret

 (lambda (z) (first z (print-int z))))

incorrect inlining of first
in print/ret

(define print/ret (lambda (z) z))

Possible solution: bind actual parameters to variables (using a
let) to ensure that they are evaluated at least once.

z doesn’t get
printed!

Easy inlining

9

The two pitfalls presented earlier can be avoided by bindings
actual arguments to variables (using a let) before using them
in the body of the inlined function.

However, a properly-designed IR can also avoid the problems
altogether by ensuring that actual parameters are always atoms,
i.e. variables or constants.

Conclusion: a good IR should only allow atomic arguments to
functions.

IR #1
standard RTL/CFG

Register transfer language

A register-transfer language (RTL) is a kind of intermediate
representation in which most operations compute a function of
one or two virtual registers (i.e. variables) and store the result
in another virtual register.

For example, the instruction adding variables y and z, storing
the result in x could be written x ! y + z. Such instructions
are sometimes called quadruples, because they typically have
four components: the three variables (x, y and z here) and the
operation (+ here).

RTLs are very close to assembly languages, the main difference
being that the number of virtual registers is usually not
bounded.

11

Control-flow graph

A control-flow graph (CFG) is a directed graph whose nodes
are the individual instructions of a function, and whose edges
represent control-flow.

More precisely, there is an edge in the CFG from a node n1 to a
node n2 if and only if the instruction of n2 can be executed
immediately after the instruction of n1.

12

RTL/CFG

RTL/CFG is the name given to intermediate representations
where each function of the program is represented as a
control-flow graph whose node contain RTL instructions.

This kind of representation is very common in the late stages of
compilers, especially those for imperative languages.

13

RTL/CFG example
Computation of the greatest common divisor of 2016 and 714
in a typical RTL/CFG representation.

14

y == 0

t!y

y!x%y

x!t

print x

y!714

x!2016

Basic blocks

A basic block is a maximal sequence of instruction for which
control can only enter through the first instruction of the block
and leave through the last.

Basic blocks are sometimes used as the nodes of the CFG,
instead of individual instructions. This has the advantage of
reducing the number of nodes in the CFG, but also
complicates data-flow analyses. It is therefore far from being
clear that basic blocks are still useful today.

15

RTL/CFG example

16

y == 0

t!y

y!x%y

x!t

print x

Same examples as before, but with basic blocks instead of
individual instructions.

x!2016

y!714

RTL/CFG pros and cons

Positive aspects of RTL/CFG:

• All intermediate values (i.e. subexpressions) are named,
which helps when performing some optimizations like
common-subexpression elimination.

Negative aspects of RTL/CFG:

• Even very simple optimizations (e.g. constant propagation,
common-subexpression elimination) require data-flow
analyses. This is because a single variable can be assigned
multiple times.

17

IR #2
RTL/CFG in SSA form

SSA form

An RTL/CFG program is said to be in static single-assignment
(SSA) form if each variable has only one definition in the
program.

That single definition can be executed many times when the
program is run – if it is inside a loop – hence the qualifier
static.

SSA form is popular because it simplifies several optimizations
and analysis, as we will see.

Most (imperative) programs are not naturally in SSA form, and
must therefore be transformed so that they are.

19

Straight-line code
Transforming a piece of straight-line code – i.e. without
branches – to SSA is trivial: each definition of a given name
gives rise to a new version of that name, identified by a
subscript:

20

x!12

y!15

x!x+y

y!x+4

z!x+y

y!y+1

x1!12

y1!15

x2!x1+y1
y2!x2+4

z1!x2+y2
y3!y2+1

to SSA

"-functions

Join-points in the CFG – nodes with more than one
predecessors – are more problematic, as each predecessor can
bring its own version of a given name.

To reconcile those different versions, a fictional "-function is
introduced at the join point. That function takes as argument
all the versions of the variable to reconcile, and automatically
selects the right one depending on the flow of control.

21

not in SSA form in SSA form

#-functions example

22

y == 0

t!y

y!x%y

x!t

print x

x!2016

y!714

x2!#(x1,x3)

y2!#(y1,y3)

y2 == 0

t1!y2
y3!x2%y2
x3!t1

print x2

x1!2016

y1!714

All #-
functions are
evaluated in

parallel

Evaluation of #-functions

23

It is crucial to understand that all #-functions of a block are
evaluated in parallel, and not in sequence as the representation
might suggest!

To make this clear, some authors write #-functions in matrix
form, with one row per predecessor:

x2!"(x1,x3)
y2!"(y1,y3)

(x2,y2)!#
x1 y1

x3 y3() instead of

In the following slides, we will usually stick to the common,
linear representation, but keep the parallel nature of #-
functions in mind.

(Naïve) building of SSA form

24

Naïve technique to build SSA form:

• for each variable x of the CFG, at each join point n, insert
a "-function of the form x="(x,…,x) with as many
parameters as n has predecessors,

• compute reaching definitions, and use that information to
rename any use of a variable according to the – now
unique – definition reaching it.

(Naïve) building of SSA form

25

CFG

x!1

y!2

z!x+y

y!y-1

x!x+y

y!y+1

x!y

y!x*2

z!z+x

After phase 1

x!1

y!2

z!x+y

y!y-1

x!x+y

y!y+1

x!y

x!"(x,x)
y!"(y,y)
z!"(z,z)
y!x*2

z!z+x

After phase 2

x1!1

y1!2

z1!x1+y1

y2!y1-1

x2!x1+y2

y3!y1+1

x3!y3

x4!"(x2,x3)
y4!"(y2,y3)
z2!"(z1,z1)
y5!x4*2

z3!z2+x4

dead
redundant

Better building techniques

The naïve technique just presented works, in the sense that the
resulting program is in SSA form and is equivalent to the
original one.

However, it introduces too many "-functions – some dead,
some redundant – to be useful in practice. It builds the
maximal SSA form.

We will examine better techniques later, but to understand
them we must first introduce the notion of dominance in a
CFG.

26

Dominance

Dominance

In a control-flow graph, a node n1 dominates a node n2 if all
paths from the start node to n2 pass through n1.

By definition, the domination relation is reflexive, that is a
node n always dominates itself. We then say that node n1
strictly dominates n2 if n1 dominates n2 and n1 ! n2.

The immediate dominator of a node n is the strict dominator of
n closest to n.

28

Dominance example

29

CFG Dominance

Node Dominators

0 { 0 }

1 { 0, 1 }

2 { 0, 1, 2 }

3 { 0, 1, 3 }

4 { 0, 1, 3, 4 }

5 { 0, 1, 3, 5 }

6 { 0, 1, 3, 6 }

7 { 0, 1, 7 }

(immediate dominator in bold)

0

1

2 3

6

7

4 5

Dominator tree

30

The dominator tree is a tree representing the dominance
relation.

The nodes of the tree are the nodes of the CFG, and a node n1
is a parent of a node n2 if and only if n1 is the immediate
dominator of n2.

Dominator tree example

31

CFG

0

1

2 3

6

7

4 5

Dominator tree

0

1

2 3

6

7

4 5

Computing dominance

32

Dominance can be computed using data-flow analysis.

To each node n of the CFG we attach a variable vn giving the
set of nodes that dominate n. The value of vn is given by the
following equation:

vn = { n } ! (vp1 " vp2 " … " vpk)

where p1, …, pk are the predecessors of n.

Dominance frontier

The dominance frontier of a node n – written
DF(n) – is the set of all nodes m such that n dominates a
predecessor of m, but does not strictly dominates m itself.

Informally, the dominance frontier of n contains the first nodes
that are reachable from n but are not strictly dominated by n.

33

Dominance frontier example

34

CFG

0

1

2 3

6

7

4 5

Dominance frontier

0

1

2 3

6

7

4 5

nodes
dominated

by 3

dominance
frontier of 3 = {7}

Dominance property of SSA

35

A program is said to be in strict SSA form if it satisfies the
following dominance property:

All uses of a variable are dominated by its (single) definition.

Transformations (e.g. optimizations) on programs in SSA form
often assume that the input program is in strict form, and must
preserve this property.

Dominance and #-functions
In our example, uses of x3 and y3 in the #-functions of block 2
apparently violate the dominance property. This is an illusion,
however, as they will be used only when coming from block 4.

36

x2!#(x1,x3)

y2!#(y1,y3)

y2 == 0

t1!y2
y3!x2%y2
x3!t1

print x2

x1!2016

y1!714

1

2

43

Building SSA form

Minimal SSA form

The naïve technique to build SSA form presented earlier inserts
"-functions for every variable at the beginning of every join
point.

Using dominance information, it is possible to do better, and
compute minimal SSA form: for each definition of a variable x
in a node n, insert a "-function for x in all nodes of DF(n).

Notice that the inserted "-functions are definitions, and can
therefore force the insertion of more "-functions.

38

Improving on minimal SSA

Reminder: the naïve technique to build SSA form presented at
the beginning computes maximal SSA form.

The better technique just presented computes minimal SSA
form.

Unfortunately, minimal SSA form is not necessarily optimal,
and can contain dead "-functions. To solve that problem,
improved techniques have been developed to build semi-
pruned – which is still not optimal – and pruned SSA form.

39

Semi-pruned SSA form

Observation: a variable that is only live in a single node can
never have a live "-function.

Therefore, the minimal technique can be further refined by first
computing the set of global names – defined as the names that
are live across more than one node – and producing "-
functions for these names only.

This is called semi-pruned SSA form.

40

Building semi-pruned SSA form

Like the naïve technique to build maximal SSA form, the
algorithm to build semi-pruned SSA form is composed of two
phases:

1."-functions are inserted for global names, according to
dominance information,

2. variables are renamed.

41

Phase 1: inserting "-functions

Before inserting "-functions, the set G of global names must
be computed. Once this is done, insertion of "-functions is
done as follows:

for each name x in G
 work list = all nodes in which x is defined
 for each node n in work list
 for each node m in DF(n)
 insert a "-function for x in m
 work list = work list ! { m }

42

Phase 2: renaming variables

Renaming is done by a pre-order traversal of the dominator
tree, as follows:

for each node n in the dominator tree
 rename definitions and uses of variables in n
 rename "-functions parameters corresponding to n in all
 successors of n in the CFG.

43

Example: phase 1

44

CFG Algorithm (phase 1)

for each name x in {x,y,z}
 work list = all nodes in which x is defined
 for each node n in work list
 for each node m in DF(n)

 insert a "-function for x in m
 work list = work list ! { m }

b c

Result

wrk lst "-fun.

[a,b,c]

[b,c] for x in d

[c,d] for x in d

[d]

[]

name x

wrk lst "-fun.

[a,b,c,d]

[b,c,d] for y in d

[c,d] for y in d

[d]

[]

name y

wrk lst "-fun.

[a,d]

[d]

[]

name z

x!1

y!2

z!x+y

y!y-1

x!x+y

y!y+1

x!y

y!x*2

z!z+x

a

d

DF(a) = DF(d) = {}
DF(b) = DF(c) = {d}

x!"(x,x)
y!"(y,y)

Example: phase 2

45

CFG

Dominator tree

a

b c d

Algorithm (phase 2)

for each node n in the dominator tree (pre-order)
 rename definitions and uses of variables in n
 rename "-functions parameters corresponding
 to n in all successors of n in the CFG.

b c

x=1

y=2

z=x+y

x1!1

y1!2

z1!x1+y1

y=y-1

x=x+y

y=y+1

x=y

x="(x,x)
y="(y,y)
y=x*2

z=z+x

a

d

chosen pre-order:
a,b,d,c

y2!y1-1

x2!x1+y2

y5!y1+1

x4!y1

x="(x2,x)
y="(y2,y)
y=x*2

z=z+x

x3="(x2,x)
y3="(y2,y)
y4=x3*2

z2=z1+x3

x3!"(x2,x4)
y3!"(y2,y5)
y4!x3*2

z2!z1+x3

Getting out of SSA form

Getting out of SSA form

After the program has been turned into SSA form and the
various optimizations performed on that representation, it must
be transformed into executable form.

This implies in particular that "-functions must be removed, as
they cannot be implemented on standard machines.

47

Removing "-functions

First idea: a "-function of the form xi="(y1,…,zn) is removed
by inserting appropriate assignments to xi in all predecessors of
the node containing that function.

This will introduce many assignments of the form xi!yj – i.e.
MOVE instructions – but most of them will be removed later
during register allocation, thanks to coalescing.

Unfortunately, as we will see, this naïve technique has two
problems, and cannot therefore be used as-is.

48

Removing "-functions

49

x1!12

y1!15

if x1<a1

y2!x1
x2!x1+1

y3!x1+1

x3!"(x2,x1)
y4!"(y2,y3)
z!x3*y4

x1!12

y1!15

if x1<a1

y2!x1
x2!x1+1

x3!x2
y4!y2

y3!x1+1

x3!x1
y4!y3

z!x3*y4

"-function
removal

(In this case,
the naïve
technique

works)

Problem #1: critical edges

50

CFG edges that go from a node with multiple successors to a
node with multiple predecessors are called critical edges.

While removing "-functions, the presence of a critical edge
from n1 to n2 leads to the insertion of useless and sometimes
incorrect move instructions in n1, corresponding to the "-
functions of n2. These should be executed only if control
reaches n2 later, but this is not certain when n1 executes.

This problem can be solved by splitting critical edges, i.e.
inserting a new node in the middle of them.

Without edge splitting

51

"-function
removal

x1!1

x2!x1

x3!x2 + 1

x2!x3

if …

print x2

incorrect!

(This problem is known as the lost copy problem.)

x1!1

x2!#(x1,x3)

x3!x2 + 1

if …

print x2

SSA critical
edge

leads
to an incorrect

value being
printed!

With edge splitting

52

"-function
removal

x1!1

x2!x1

x3!x2 + 1

if …

print x2

x2!x3

non-SSA

x1!1

x2!#(x1,x3)

x3!x2 + 1

if …

print x2

SSA

Problem #2: parallel move

53

The semantics of SSA impose that all #-functions of a block
are evaluated in parallel.

For that reason, #-functions should rigorously not be replaced
by a sequence of assignments in the predecessor, but rather by
a single parallel assignment, e.g. (x2,y2)!(x1,y1)

If the target language does not offer parallel assignment, care
should be taken to make sure that the sequence of assignments
is equivalent to a parallel assignment. In the case of cyclic
dependencies, this requires the use of an additional temporary
variable. Example:

(x2,y2)!(y2,x2)

t!x2

x2!y2

y2!t

#

Parallel move problem

54

x2!#(x1,y2)

y2!#(y1,x2)

…

……

SSA

…

…

x2!y2

y2!x2

…

x2!x1

y2!y1

incorrect!

"-functions
removal

(This problem is know as the swap problem.)

Parallel move problem

55

x2!#(x1,y2)

y2!#(y1,x2)

…

……

SSA

…

…

t!x2

x2!y2

y2!t

…

x2!x1

y2!y1

non-SSA

"-functions
removal

SSA and
functional programming

SSA vs. functional programming

SSA and (pure) functional programming languages share the
characteristic that variables can be “assigned” once only. This
is what makes programs in SSA form easier to analyze for the
compiler, and a part of what makes functional programs easier
to reason about for programmers.

The relation between the two is much deeper, however: SSA is
basically functional programming with a different syntax!

57

val x1 = 2016
val y1 = 714
loop(x1, y1)
def loop(x2,y2) =
 if (y2 == 0)
 print(x2)
 else {
 val y3 = x2 % y2

 val x3 = y2

 loop(x3, y3)
 }

SSA vs. functional programming

58

y2 == 0

y3!x2%y2
x3!y2

print x2

x1!2016

y1!714

(x2,y2)!#
x1 y1

x3 y3()

RTL/CFG in SSA form functional program

SSA vs. functional programming

59

SSA Functional programming

code blocks starting with
#-functions

" functions with parameters

(“calls” to) #-functions " function parameters

jumps " tail calls to functions

dominance property " variable scope

SSA pros and cons

60

Positive aspects of SSA form:

• Several optimizations and analysis are simpler when the
RTL/CFG program is in SSA form, thanks to the single-
assignment property.

Negative aspects of SSA form:

• #-functions are an additional concept that must be
handled by all code that manipulates the IR.

As we have seen, basic blocks with #-functions are equivalent
to functions with arguments. This suggests that a functional
language with nested functions might be as powerful than RTL/
CFG in SSA form, but simpler and cleaner.

IR #3
Functional IR

Functional IRs

A functional IR is an intermediate representation that is close
to a (very) simple functional programing language.

Typical functional IRs have the same interesting characteristics
as RTL/CFG in SSA form, namely:

• all operations (e.g. arithmetic operations) are performed on
atomic values (variables or constants), and the result of
these operations is always named,

• variables can be “assigned” only once.

But they also bring several advantages compared to RTL/CFG
in SSA form, as we will see later.

62

Code sharing
In RTL/CFG, a block can have multiple predecessors, like the
block C below:

63

C

In a functional IR, a (local) function can be used to represent
the block C. Jumps to C are simply represented as tail calls to
the C function:

let C() = ... // code for C
in ... C() // in the code for A
 ... C() // in the code for B

Notice that the function C is basically a continuation!

A B

Functional IRs in CPS

The fact that continuations can be used to represent code
blocks with multiple predecessors suggests that a functional IR
might benefit from being in CPS.

Apart from shared code blocks, continuations also make it
possible to express other language features:

• function returns, which are nothing but a call to the return
continuation,

• exceptions, which can be implemented by passing a
second continuation to every function, representing the
current exception handler.

64

A functional IR in CPS

The syntax of a simple functional IR in CPS could be:

T ::=
 letval x = V in T
 let x1 = x2 $ x3 in T where $ is one of { +, -, *, … }

 letcont k (x1, …, xn) = T1 in T2

 f (k, x1, …, xn)
 k (x1, …, xn)
 if x1 % x2 then k1 else k2 where % is one of { =, !, <, … }

V ::=
 integer

 $(x1, …, xn) T

65

Code example
In our functional IR, the code to compute the gcd of 2016 and
714 would look as follows:

letcont loop(x, y) =
 letcont k1() = print(x) in
 letcont k2() =
 let t = x % y in
 loop(y, t)
 in
 letval z = 0 in
 if y = z then k1 else k2

in
letval x = 2016 in
letval y = 714 in
loop(x, y)

66

Scope vs. dominance property

Like in a standard functional language, all variables in a
functional IR have a scope outside which they cannot be
referenced.

This notion of scope plays the same role as the dominance
property in SSA (reminder: the dominance property specifies
that all uses of a variable v must be dominated by the
definition of v).

Notice, however, that checking that all uses of a variable are in
the scope of its definition is much easier with a functional IR,
as the dominance relation does not have to be computed:
scope is purely syntactical.

In our IR, the scope of all variables is the term following the
keyword in.

67

Functional IR pros and cons

Positive aspects of functional IRs:

• Well-designed functional IRs have all the advantages of
RTL/CFG programs in SSA form, but are simpler because
they do not have #-functions.

Negative aspects of functional IRs:

• Most (current) literature on compiler optimization uses
RTL/CFG in SSA form, which means that its algorithms
must be adapted before being applicable to a functional
IR.

68

Summary

Choosing the right intermediate representation is one of the
most crucial design choice for a compiler author.

RTL/CFG is a classical intermediate representation that is close
to the instruction set of a typical von Neumann computer. It is
widely used, but its imperative nature makes it difficult to
analyze and reason about.

RTL/CFG can be improved by using SSA form, which is
basically a functional version of RTL/CFG.

Functional intermediate languages have all the advantages of
SSA form. However, by modeling code blocks as functions
with arguments, they can do without #-functions. This makes
them probably the best kind of intermediate languages, even
when compiling imperative languages.

69

