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Intermediate representations

The term intermediate representation (IR) or intermediate 
language designates the data-structure(s) used by the compiler 
to represent the program being compiled.
Choosing a good IR is crucial, as many analyses and 
transformations (e.g. optimizations) are substantially easier to 
perform on some IRs than on others.
Most non-trivial compilers actually use several IRs during the 
compilation process, and they tend to become more low-level 
as the code approaches its final form.
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Impact of IR on 
optimizations



Example 1: constant prop.
To illustrate the impact of IR on optimizations, consider the 
following simple program fragment:
x←7
...

Is it legal to perform constant propagation and blindly replace 
all later occurrences of x by 7?
The answer depends on the IR:
• If the IR allows multiple assignments to the same variable, 

then additional (data-flow) analyses are required to answer 
the question, as x might be re-assigned later.

• However, if the IR does not allow multiple assignments to 
the same variable, then yes, all occurrences of x can be 
unconditionally replaced by 7!
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Other simple optimizations
Apart from constant propagation, many simple optimizations 
are made hard by the presence of multiple assignments to a 
single variable:

• common-subexpression elimination, which consists in 
avoiding the repeated evaluation of expressions,

• (simple) dead code elimination, which consists in 
removing assignments to variables whose value is not used 
later,

• etc.
In all cases, analyses are required to distinguish the various 
“versions” of a variable that appear in the program.
Conclusion: a good IR should not allow multiple assignments 
to a variable!
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Example 2: inlining

Inlining (or in-line expansion) consists in replacing a call to a 
function by a copy of the body of that function, with 
parameters replaced by the actual arguments. It is a very 
important compiler optimization, as it often opens the door to 
further optimizations.
Some aspects of the intermediate representation can have an 
important impact on the implementation of inlining. To 
illustrate this, let us examine some problems that can occur 
when performing inlining directly on the AST – a choice that 
might seem reasonable at first sight.
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Naïve inlining: problem #1
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(define print/ret (lambda (x) (print-int x) x))
(define twice (lambda (y) (+ y y)))
(define f (lambda (z) (twice (print/ret z))))

incorrect inlining 
of twice in f

(define f (lambda (z)
            (+ (print-and-ret z)
               (print-and-ret z))))

Possible solution: bind actual parameters to variables (using a 
let) to ensure that they are evaluated at most once.

z gets printed 
twice!



Naïve inlining: problem #2
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(define first (lambda (x y) x))
(define print/ret
  (lambda (z) (first z (print-int z))))

incorrect inlining of first 
in print/ret

(define print/ret (lambda (z) z))

Possible solution: bind actual parameters to variables (using a 
let) to ensure that they are evaluated at least once.

z doesn’t get 
printed!



Easy inlining
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The two pitfalls presented earlier can be avoided by bindings 
actual arguments to variables (using a let) before using them 
in the body of the inlined function.
However, a properly-designed IR can also avoid the problems 
altogether by ensuring that actual parameters are always atoms, 
i.e. variables or constants.
Conclusion: a good IR should only allow atomic arguments to 
functions.



IR #1
standard RTL/CFG



Register transfer language

A register-transfer language (RTL) is a kind of intermediate 
representation in which most operations compute a function of 
one or two virtual registers (i.e. variables) and store the result 
in another virtual register.
For example, the instruction adding variables y and z, storing 
the result in x could be written x ← y + z. Such instructions 
are sometimes called quadruples, because they typically have 
four components: the three variables (x, y and z here) and the 
operation (+ here).
RTLs are very close to assembly languages, the main difference 
being that the number of virtual registers is usually not 
bounded.
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Control-flow graph

A control-flow graph (CFG) is a directed graph whose nodes 
are the individual instructions of a function, and whose edges 
represent control-flow.
More precisely, there is an edge in the CFG from a node n1 to a 
node n2 if and only if the instruction of n2 can be executed 
immediately after the instruction of n1.
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RTL/CFG

RTL/CFG is the name given to intermediate representations 
where each function of the program is represented as a 
control-flow graph whose node contain RTL instructions.
This kind of representation is very common in the late stages of 
compilers, especially those for imperative languages.
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RTL/CFG example
Computation of the greatest common divisor of 2016 and 714 
in a typical RTL/CFG representation.
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y == 0

t←y

y←x%y

x←t

print x

y←714

x←2016



Basic blocks

A basic block is a maximal sequence of instruction for which 
control can only enter through the first instruction of the block 
and leave through the last.
Basic blocks are sometimes used as the nodes of the CFG, 
instead of individual instructions. This has the advantage of 
reducing the number of nodes in the CFG, but also 
complicates data-flow analyses. It is therefore far from being 
clear that basic blocks are still useful today.
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RTL/CFG example
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y == 0

t←y
y←x%y
x←t

print x

Same examples as before, but with basic blocks instead of 
individual instructions.

x←2016
y←714



RTL/CFG pros and cons

Positive aspects of RTL/CFG:
• All intermediate values (i.e. subexpressions) are named, 

which helps when performing some optimizations like 
common-subexpression elimination.

Negative aspects of RTL/CFG:
• Even very simple optimizations (e.g. constant propagation, 

common-subexpression elimination) require data-flow 
analyses. This is because a single variable can be assigned 
multiple times.
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IR #2
RTL/CFG in SSA form



SSA form

An RTL/CFG program is said to be in static single-assignment 
(SSA) form if each variable has only one definition in the 
program.
That single definition can be executed many times when the 
program is run – if it is inside a loop – hence the qualifier 
static.
SSA form is popular because it simplifies several optimizations 
and analysis, as we will see.
Most (imperative) programs are not naturally in SSA form, and 
must therefore be transformed so that they are.
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Straight-line code
Transforming a piece of straight-line code – i.e. without 
branches – to SSA is trivial: each definition of a given name 
gives rise to a new version of that name, identified by a 
subscript:
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x←12
y←15
x←x+y
y←x+4
z←x+y
y←y+1

x1←12
y1←15
x2←x1+y1
y2←x2+4
z1←x2+y2
y3←y2+1

to SSA



ϕ-functions

Join-points in the CFG – nodes with more than one 
predecessors – are more problematic, as each predecessor can 
bring its own version of a given name.
To reconcile those different versions, a fictional ϕ-function is 
introduced at the join point. That function takes as argument 
all the versions of the variable to reconcile, and automatically 
selects the right one depending on the flow of control.
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not in SSA form in SSA form

ɸ-functions example
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y == 0

t←y
y←x%y
x←t

print x

x←2016
y←714

x2←ɸ(x1,x3)
y2←ɸ(y1,y3)

y2 == 0

t1←y2
y3←x2%y2
x3←t1

print x2

x1←2016
y1←714

All ɸ-
functions are 
evaluated in 

parallel



Evaluation of ɸ-functions
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It is crucial to understand that all ɸ-functions of a block are 
evaluated in parallel, and not in sequence as the representation 
might suggest!
To make this clear, some authors write ɸ-functions in matrix 
form, with one row per predecessor:

x2←ϕ(x1,x3)
y2←ϕ(y1,y3)(x2,y2)←ɸ x1 y1

x3 y3( ) instead of

In the following slides, we will usually stick to the common, 
linear representation, but keep the parallel nature of ɸ-
functions in mind.



(Naïve) building of SSA form
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Naïve technique to build SSA form:
• for each variable x of the CFG, at each join point n, insert 

a ϕ-function of the form x=ϕ(x,…,x) with as many 
parameters as n has predecessors,

• compute reaching definitions, and use that information to 
rename any use of a variable according to the – now 
unique – definition reaching it.



(Naïve) building of SSA form
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CFG

x←1
y←2
z←x+y

y←y-1
x←x+y

y←y+1
x←y

y←x*2
z←z+x

After phase 1

x←1
y←2
z←x+y

y←y-1 
x←x+y

y←y+1
x←y

x←ϕ(x,x)
y←ϕ(y,y)
z←ϕ(z,z)
y←x*2
z←z+x

After phase 2

x1←1
y1←2
z1←x1+y1

y2←y1-1
x2←x1+y2

y3←y1+1
x3←y3

x4←ϕ(x2,x3)
y4←ϕ(y2,y3)
z2←ϕ(z1,z1)
y5←x4*2
z3←z2+x4
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redundant



Better building techniques

The naïve technique just presented works, in the sense that the 
resulting program is in SSA form and is equivalent to the 
original one.
However, it introduces too many ϕ-functions – some dead, 
some redundant – to be useful in practice. It builds the 
maximal SSA form.
We will examine better techniques later, but to understand 
them we must first introduce the notion of dominance in a 
CFG.
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Dominance



Dominance

In a control-flow graph, a node n1 dominates a node n2 if all 
paths from the start node to n2 pass through n1.
By definition, the domination relation is reflexive, that is a 
node n always dominates itself. We then say that node n1 
strictly dominates n2 if n1 dominates n2 and n1 ≠ n2.
The immediate dominator of a node n is the strict dominator of 
n closest to n.
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Dominance example
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CFG Dominance

Node Dominators

0 { 0 }

1 { 0, 1 }

2 { 0, 1, 2 }

3 { 0, 1, 3 }

4 { 0, 1, 3, 4 }

5 { 0, 1, 3, 5 }

6 { 0, 1, 3, 6 }

7 { 0, 1, 7 }

(immediate dominator in bold)

0

1

2 3

6

7

4 5



Dominator tree
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The dominator tree is a tree representing the dominance 
relation.
The nodes of the tree are the nodes of the CFG, and a node n1 
is a parent of a node n2 if and only if n1 is the immediate 
dominator of n2.



Dominator tree example
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CFG

0

1

2 3

6

7

4 5

Dominator tree

0

1

2 3

6

7

4 5



Computing dominance
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Dominance can be computed using data-flow analysis.
To each node n of the CFG we attach a variable vn giving the 
set of nodes that dominate n. The value of vn is given by the 
following equation:

vn = { n } ∪ (vp1 ∩ vp2 ∩ … ∩ vpk)

where p1, …, pk are the predecessors of n.



Dominance frontier

The dominance frontier of a node n – written
DF(n) – is the set of all nodes m such that n dominates a 
predecessor of m, but does not strictly dominates m itself.
Informally, the dominance frontier of n contains the first nodes 
that are reachable from n but are not strictly dominated by n.
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Dominance frontier example
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CFG

0

1

2 3

6

7

4 5

Dominance frontier

0

1

2 3

6

7

4 5

nodes 
dominated 

by 3

dominance 
frontier of 3 = {7}



Dominance property of SSA
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A program is said to be in strict SSA form if it satisfies the 
following dominance property:

All uses of a variable are dominated by its (single) definition.
Transformations (e.g. optimizations) on programs in SSA form 
often assume that the input program is in strict form, and must 
preserve this property.



Dominance and ɸ-functions
In our example, uses of x3 and y3 in the ɸ-functions of block 2 
apparently violate the dominance property. This is an illusion, 
however, as they will be used only when coming from block 4.
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x2←ɸ(x1,x3)
y2←ɸ(y1,y3)

y2 == 0

t1←y2
y3←x2%y2
x3←t1

print x2

x1←2016
y1←714

1

2
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Building SSA form



Minimal SSA form

The naïve technique to build SSA form presented earlier inserts 
ϕ-functions for every variable at the beginning of every join 
point.
Using dominance information, it is possible to do better, and 
compute minimal SSA form: for each definition of a variable x 
in a node n, insert a ϕ-function for x in all nodes of DF(n).
Notice that the inserted ϕ-functions are definitions, and can 
therefore force the insertion of more ϕ-functions.
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Improving on minimal SSA

Reminder: the naïve technique to build SSA form presented at 
the beginning computes maximal SSA form.
The better technique just presented computes minimal SSA 
form.
Unfortunately, minimal SSA form is not necessarily optimal, 
and can contain dead ϕ-functions. To solve that problem, 
improved techniques have been developed to build semi-
pruned – which is still not optimal – and pruned SSA form.
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Semi-pruned SSA form

Observation: a variable that is only live in a single node can 
never have a live ϕ-function.
Therefore, the minimal technique can be further refined by first 
computing the set of global names – defined as the names that 
are live across more than one node – and producing ϕ-
functions for these names only.
This is called semi-pruned SSA form.
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Building semi-pruned SSA form

Like the naïve technique to build maximal SSA form, the 
algorithm to build semi-pruned SSA form is composed of two 
phases:

1.ϕ-functions are inserted for global names, according to 
dominance information,

2. variables are renamed.
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Phase 1: inserting ϕ-functions

Before inserting ϕ-functions, the set G of global names must 
be computed. Once this is done, insertion of ϕ-functions is 
done as follows:
for each name x in G
  work list = all nodes in which x is defined
  for each node n in work list
    for each node m in DF(n)
      insert a ϕ-function for x in m
      work list = work list ∪ { m }
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Phase 2: renaming variables

Renaming is done by a pre-order traversal of the dominator 
tree, as follows:
for each node n in the dominator tree
  rename definitions and uses of variables in n
  rename ϕ-functions parameters corresponding to n in all
    successors of n in the CFG.
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Example: phase 1

44

CFG Algorithm (phase 1)

for each name x in {x,y,z}
  work list = all nodes in which x is defined
  for each node n in work list
    for each node m in DF(n)
      insert a ϕ-function for x in m
      work list = work list ∪ { m }

b c

Result

x←1
y←2
z←x+y

y←y-1
x←x+y

y←y+1
x←y

y←x*2
z←z+x

a

d

DF(a) = DF(d) = {}
DF(b) = DF(c) = {d}
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a

b c d

Algorithm (phase 2)
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Getting out of SSA form

After the program has been turned into SSA form and the 
various optimizations performed on that representation, it must 
be transformed into executable form.
This implies in particular that ϕ-functions must be removed, as 
they cannot be implemented on standard machines.
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Removing ϕ-functions

First idea: a ϕ-function of the form xi=ϕ(y1,…,zn) is removed 
by inserting appropriate assignments to xi in all predecessors of 
the node containing that function.
This will introduce many assignments of the form xi←yj – i.e. 
MOVE instructions – but most of them will be removed later 
during register allocation, thanks to coalescing.
Unfortunately, as we will see, this naïve technique has two 
problems, and cannot therefore be used as-is.

48



Removing ϕ-functions
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x1←12
y1←15
if x1<a1

y2←x1
x2←x1+1

y3←x1+1

x3←ϕ(x2,x1)
y4←ϕ(y2,y3)
z←x3*y4

x1←12
y1←15
if x1<a1

y2←x1
x2←x1+1
x3←x2
y4←y2

y3←x1+1
x3←x1
y4←y3

z←x3*y4

ϕ-function 
removal

(In this case, 
the naïve 
technique 

works)



Problem #1: critical edges
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CFG edges that go from a node with multiple successors to a 
node with multiple predecessors are called critical edges.
While removing ϕ-functions, the presence of a critical edge 
from n1 to n2 leads to the insertion of useless and sometimes 
incorrect move instructions in n1, corresponding to the ϕ-
functions of n2. These should be executed only if control 
reaches n2 later, but this is not certain when n1 executes.
This problem can be solved by splitting critical edges, i.e. 
inserting a new node in the middle of them.



Without edge splitting
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ϕ-function 
removal

x1←1
x2←x1

x3←x2 + 1
x2←x3
if …

print x2

incorrect!

(This problem is known as the lost copy problem.)

x1←1

x2←ɸ(x1,x3)
x3←x2 + 1
if …

print x2

SSA critical 
edge
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ϕ-function 
removal

x1←1
x2←x1

x3←x2 + 1
x2←x3
if …

print x2

incorrect!

(This problem is known as the lost copy problem.)

x1←1

x2←ɸ(x1,x3)
x3←x2 + 1
if …

print x2

SSA critical 
edge

leads 
to an incorrect 

value being 
printed!



With edge splitting
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ϕ-function 
removal

x1←1
x2←x1

x3←x2 + 1
if …

print x2

x2←x3

non-SSA

x1←1

x2←ɸ(x1,x3)
x3←x2 + 1
if …

print x2

SSA



Problem #2: parallel move
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The semantics of SSA impose that all ɸ-functions of a block 
are evaluated in parallel.
For that reason, ɸ-functions should rigorously not be replaced 
by a sequence of assignments in the predecessor, but rather by 
a single parallel assignment, e.g. (x2,y2)←(x1,y1)
If the target language does not offer parallel assignment, care 
should be taken to make sure that the sequence of assignments 
is equivalent to a parallel assignment. In the case of cyclic 
dependencies, this requires the use of an additional temporary 
variable. Example:

(x2,y2)←(y2,x2)
t←x2
x2←y2
y2←t

≣



Parallel move problem
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x2←ɸ(x1,y2)
y2←ɸ(y1,x2)

…

……

SSA

…

…
x2←y2
y2←x2

…
x2←x1
y2←y1

incorrect!

ϕ-functions 
removal

(This problem is know as the swap problem.)



Parallel move problem
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x2←ɸ(x1,y2)
y2←ɸ(y1,x2)

…

……

SSA

…

…
t←x2
x2←y2
y2←t

…
x2←x1
y2←y1

non-SSA

ϕ-functions 
removal



SSA and
functional programming



SSA vs. functional programming

SSA and (pure) functional programming languages share the 
characteristic that variables can be “assigned” once only. This 
is what makes programs in SSA form easier to analyze for the 
compiler, and a part of what makes functional programs easier 
to reason about for programmers.
The relation between the two is much deeper, however: SSA is 
basically functional programming with a different syntax!
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val x1 = 2016
val y1 = 714
loop(x1, y1)
def loop(x2,y2) =
    if (y2 == 0)
        print(x2)
    else {
        val y3 = x2 % y2

        val x3 = y2

        loop(x3, y3)
    }

SSA vs. functional programming

58

y2 == 0

y3←x2%y2
x3←y2

print x2

x1←2016
y1←714

(x2,y2)←ɸ x1 y1
x3 y3( )

RTL/CFG in SSA form functional program
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SSA vs. functional programming
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SSA Functional programming

code blocks starting with
ɸ-functions

≈ functions with parameters

(“calls” to) ɸ-functions ≈ function parameters

jumps ≈ tail calls to functions

dominance property ≈ variable scope



SSA pros and cons
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Positive aspects of SSA form:
• Several optimizations and analysis are simpler when the 

RTL/CFG program is in SSA form, thanks to the single-
assignment property.

Negative aspects of SSA form:
• ɸ-functions are an additional concept that must be 

handled by all code that manipulates the IR.
As we have seen, basic blocks with ɸ-functions are equivalent 
to functions with arguments. This suggests that a functional 
language with nested functions might be as powerful than RTL/
CFG in SSA form, but simpler and cleaner.



IR #3
Functional IR



Functional IRs

A functional IR is an intermediate representation that is close 
to a (very) simple functional programing language.
Typical functional IRs have the same interesting characteristics 
as RTL/CFG in SSA form, namely:

• all operations (e.g. arithmetic operations) are performed on 
atomic values (variables or constants), and the result of 
these operations is always named,

• variables can be “assigned” only once.
But they also bring several advantages compared to RTL/CFG 
in SSA form, as we will see later.
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Code sharing
In RTL/CFG, a block can have multiple predecessors, like the 
block C below:

63

C

In a functional IR, a (local) function can be used to represent 
the block C. Jumps to C are simply represented as tail calls to 
the C function:
let C() = ...  // code for C
in ... C()     // in the code for A
   ... C()     // in the code for B
Notice that the function C is basically a continuation!

A B



Functional IRs in CPS

The fact that continuations can be used to represent code 
blocks with multiple predecessors suggests that a functional IR 
might benefit from being in CPS.
Apart from shared code blocks, continuations also make it 
possible to express other language features:

• function returns, which are nothing but a call to the return 
continuation,

• exceptions, which can be implemented by passing a 
second continuation to every function, representing the 
current exception handler.
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A functional IR in CPS

The syntax of a simple functional IR in CPS could be:
T ::=
    letval x = V in T
    let x1 = x2 ⊕ x3 in T  where ⊕ is one of { +, -, *, … }
    letcont k (x1, …, xn) = T1 in T2

    f (k, x1, …, xn)
    k (x1, …, xn)
    if x1 ⊜ x2 then k1 else k2  where ⊜ is one of { =, ≠, <, … }

V ::=
    integer
    λ(x1, …, xn) T
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Code example
In our functional IR, the code to compute the gcd of 2016 and 
714 would look as follows:
letcont loop(x, y) =
    letcont k1() = print(x) in
    letcont k2() =
        let t = x % y in
        loop(y, t)
    in
    letval z = 0 in
    if y = z then k1 else k2

in
letval x = 2016 in
letval y = 714 in
loop(x, y)
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Scope vs. dominance property
Like in a standard functional language, all variables in a 
functional IR have a scope outside which they cannot be 
referenced.
This notion of scope plays the same role as the dominance 
property in SSA (reminder: the dominance property specifies 
that all uses of a variable v must be dominated by the 
definition of v).
Notice, however, that checking that all uses of a variable are in 
the scope of its definition is much easier with a functional IR, 
as the dominance relation does not have to be computed: 
scope is purely syntactical.
In our IR, the scope of all variables is the term following the 
keyword in.
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Functional IR pros and cons

Positive aspects of functional IRs:
• Well-designed functional IRs have all the advantages of 

RTL/CFG programs in SSA form, but are simpler because 
they do not have ɸ-functions.

Negative aspects of functional IRs:
• Most (current) literature on compiler optimization uses 

RTL/CFG in SSA form, which means that its algorithms 
must be adapted before being applicable to a functional 
IR.
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Summary
Choosing the right intermediate representation is one of the 
most crucial design choice for a compiler author.
RTL/CFG is a classical intermediate representation that is close 
to the instruction set of a typical von Neumann computer. It is 
widely used, but its imperative nature makes it difficult to 
analyze and reason about.
RTL/CFG can be improved by using SSA form, which is 
basically a functional version of RTL/CFG.
Functional intermediate languages have all the advantages of 
SSA form. However, by modeling code blocks as functions 
with arguments, they can do without ɸ-functions. This makes 
them probably the best kind of intermediate languages, even 
when compiling imperative languages.
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