
Dataflow analysis
Michel Schinz

Advanced Compiler Construction – 2009-05-01

A first example:
Available expressions

Common subexp. elimination

The following C program fragment sets r to xy for y > 0. How 
can it be (slightly) optimised?

 1 int y1 = 1;

 2 int r = x;

 3 while (y1 != y) {

 4   int t = y1*2;

 5   if (t <= y) {

 6     r = r*r;

 7     y1 = y1*2;

 8   } else {

 9     r = r*x;

10     y1 = y1+1;

11  }

12 }

3

Here, y1*2 can be 
replaced by t

Available expressions

Why is the previous optimization valid?

Because at line 7, where expression y1*2 appears for the 
second time, it is available. That is, no matter how we reach 
line 7, y1*2 will have been computed previously at line 4. The 
computation of line 4 is still valid at line 7 because no 
redefinition of y1 appears between those two points.

Generally speaking, we can define for every program point the 
set of available expressions, which is the set of all non-trivial 
expressions whose value has already been computed at that 
point.

4

Available expressions

5

int y1 = 1

int r = x

while (y1 != y)

int t = y1*2

if (t <= y)

r = r*r

y1 = y1*2

r = r*x

y1 = y1+1

{} {}

{} {}

{} {}

{} {y1*2}

{y1*2} {y1*2}

{y1*2} {y1*2}

{y1*2} {} {y1*2} {}

{y1*2} {y1*2}

before after
Note: we 
only consider 
arithmetic 
expressions.

Formalizing the analysis

6

How can these ideas be formalized?

1. introduce a variable in for the set of expressions available 
before node n, and a variable on for the set of expressions 
available after node n,

2. define equations between those variables,

3. solve those equations.



Equations

7

i1={}
i2=o1

i3=o2!o7!o10

i4=o3

i5=o4

i6=o5

i7=o6

i9=o5

i10=o9

o1=i1
o2=i2
o3=i3
o4= {y1*2}"i4
o5=i5
o6=i6!r
o7=i7!y1
o9=i9!r

o10=i10!y1

int y1 = 1

int r = x

while (y1 != y)

int t = y1 * 2

if (t <= y)

r = r * r

y1 = y1 * 2

r = r * x

y1 = y1 + 1

1

2

3

4

5

6

7

9

10

Notation:
S!x =
  S\{all expressions using x}

Solving equations

8

The equations can be solved by iteration:

• initialize all sets i1, …, i10, o1, …, o10 to the set of all non-
trivial expressions in the program, here
{y1*2, y1+1, r*r, r*x},

• viewing the equations as assignments, compute the “new” 
value of those sets,

• iterate until fixed point is reached.

Initialization is done that way because we are interested in 
finding the largest sets satisfying the equations: the larger a set 
is, the more information it conveys (for this analysis).

Solving equations
To simplify the equations, we can first replace all ik variables 
by their value, to obtain a simpler system, and then solve that 
system.

For our example, we get:

9

o1 = {}
o2 = o1

o3 = o2 ! o7 ! o10

o4 = o3 " {y1*2}

o5 = o4

o6 = o5!r

o7 = o6!y1

o9 = o5!r

o10 = o9!y1

Solving equations
The simpler system can be solved by iterating until a fixed 
point is reached, which happens after 7 iterations.

10

It. 1 2 3 4 5 6 7
o1

o2

o3

o4

o5

o6

o7

o9

o10

YR {} {} {} {} {} {}

YR YR {} {} {} {} {}

YR YR R {} {} {} {}

YR YR YR {y1*2, r*r, r*x} {y1*2} {y1*2} {y1*2}

YR YR YR YR {y1*2, r*r, r*x} {y1*2} {y1*2}

YR Y Y Y Y {y1*2} {y1*2}

YR R {} {} {} {} {}

YR Y Y Y Y {y1*2} {y1*2}

YR R {} {} {} {} {}

Notation: Y={y1*2, y1+1}, R={r*r, r*x}, YR = Y " R

Generalization

In general, for a node n of the control-flow graph, the 
equations have the following form:

in = op1 ! op2 ! … ! opk

where p1 … pk are the predecessors of n.

on = genAE(n) " (in \ killAE(n))

where genAE(n) are the non-trivial expressions computed 
by n, and killAE(n) is the set of all non-trivial expressions 
that use a variable modified by n.

Substituting in in on, we obtain the following equation for on:

on = genAE(n) " [(op1 ! op2 ! … ! opk) \ killAE(n)]

These equations are the dataflow equations for the available 
expressions dataflow analysis.

11

Note: generated expressions

The equation giving the expressions available at the exit of 
node n is: 

on = genAE(n) " (in \ killAE(n))

where genAE(n) are the non-trivial expressions computed by n, 
and killAE(n) is the set of all non-trivial expressions that use a 
variable modified by n.

In order for this equation to be correct, expressions that are 
computed by n but which use a variable modified by n must 
not be part of genAE(n). For example

genAE( x=y*y ) = {y*y}  but  genAE( y=y*y ) = {}

12



Dataflow analysis

Available expressions is one example of a dataflow analysis.

Dataflow analysis is a global analysis framework that can be 
used to approximate various properties of programs.

The results of those analyses can be used to perform several 
optimisations, for example:

• common sub-expression elimination, as we have seen,

• dead-code elimination,

• constant propagation,

• register allocation,

• etc.

13

Analysis scope

In this course, we will only consider intra-procedural dataflow 
analyses. That is, analyses that work on a single function at a 
time.

As in our example, those analyses work on the code of a 
function represented as a control-flow graph (CFG).

The nodes of the CFG are the statements of the function.

The edges of the CFG represent the flow of control: there is an 
edge from n1 to n2 if and only if control can flow immediately 
from n1 to n2. That is, if the statements of n1 and n2 can be 
executed in direct succession.

14

Analysis #2
Live variables

Live variable

A variable is said to be live at a given point if its value will be 
read later. While liveness is clearly undecidable, a conservative 
approximation can be computed using dataflow analysis.

This approximation can then be used, for example, to allocate 
registers: a set of variables that are never live at the same time 
can share a single register.

16

Intuitions

Intuitively, a variable is live after a node if it is live before any 
of its successors.

Moreover, a variable is live before node n if it is either read by 
n, or live after n and not written by n.

Finally, no variable is live after an exit node.

17

Equations

We associate to every node n a pair of variables (in,on) that give 
the set of variables live when the node is entered or exited, 
respectively. These variables are defined as follows:

in = genLV(n) # (on \ killLV(n)) 

where genLV(n) is the set of variables read by n, and 
killLV(n) is the set of variables written by n.

on = is1 # is2 # … # isk

where s1 … sk are the successors of n.

Substituting on in in, we obtain the following equation for in:

in = genLV(n) # [(is1 # is2 # … # isk) \ killLV(n)]

18



Equation solving

We are interested in finding the smallest sets of variables live at 
a given point, as the information conveyed by a set decreases 
as its size increases.

Therefore, to solve the equations by iteration, we initialize all 
sets with the empty set.

19

Example

20

equations

i1 = i2 \ {x}
i2 = i3 \ {y}
i3 = {x, y} " (i4 " i5)

i4 = {x} " (i6 \ {z})

i5 = {y} " (i6 \ {z})

i6 = {z}

solution

i1 = {}
i2 = {x}
i3 = {x, y}
i4 = {x}
i5 = {y}
i6 = {z}

CFG

1 x=read-int

2 y=read-int

3 if x<y

4 z=x 5 z=y

6 print z

Using live variables

21

original CFG

1 x=read-int

2 y=read-int

3 if x<y

4 z=x 5 z=y

6 print z

optimized CFG

x=read-int

y=read-int

if x<y

y=x

print y

analysis result

i1 = {}
i2 = { x }
i3 = { x, y }
i4 = { x }
i5 = { y }
i6 = { z }

The previous analysis shows that neither x nor y are live at the 
same time as z. Therefore, z can be replaced by x or y, 
thereby removing one assignment.

Analysis #3
Reaching definitions

Reaching definitions

The reaching definitions for a program point are the 
assignments that may have defined the values of variables at 
that point.

Dataflow analysis can approximate the set of reaching 
definitions for all program points. These sets can then be used 
to perform constant propagation, for example.

23

Intuitions

Intuitively, a definition reaches the beginning of a node if it 
reaches the exit of any of its predecessors.

Moreover, a definition contained in a node n always reaches 
the end of n itself.

Finally, a definition reaches the end of a node n if it reaches 
the beginning of n and is not killed by n itself.

(A node n kills a definition d if and only if n is a definition and 
defines the same variable as d.)

As a first approximation, we consider that no definition 
reaches the beginning of the entry node.

24



Equations

We associate to every node n a pair of variables (in,on) that give 
the set of definitions reaching the entry and exit of n, 
respectively. These variables are defined as follows:

in = op1 " op2 " … " opk

where p1 …!pk are the predecessors of n.

on = genRD(n) " (in \ killRD(n))

where genRD(n) is {n} if n is a definition, {} otherwise, and 
killRD(n) is the set of definitions defining the same variable 
as n itself.

Substituting in in on, we obtain the following equation for on:

on = genRD(n) " [(op1 " op2 " … " opk) \ killRD(n)]

25

Equation solving

We are interested in finding the smallest sets of definitions 
reaching a point, as the information conveyed by a set 
decreases as its size increases.

Therefore, to solve the equations by iteration, we initialize all 
sets with the empty set.

26

Example

27

CFG

x=100

y=3

z=0

x=x-1

z=z+y

if x>0

print z

1

2

3

4

5

6

7

equations

o1={(x,1)}
o2={(y,2)} " o1!y

o3={(z,3)} " o2!z

o4={(x,4)} " (o3 " o6)!x

o5={(z,5)} " o4!z

o6=o5

o7=o6

solution

o1={(x,1)}
o2={(x,1), (y,2)}
o3={(x,1), (y,2), (z,3)}
o4={(x,4), (y,2), (z,3), (z,5)}
o5={(x,4), (y,2), (z,5)}
o6={(x,4), (y,2), (z,5)}
o7={(x,4), (y,2), (z,5)}

Notation:
S!x = S \ {all definitions of x}

Using reaching definitions

28

original CFG

x=100

y=3

z=0

x=x-1

z=z+y

if x>0

print z

1

2

3

4

5

6

7

analysis result optimized CFG

x=100

y=3

z=0

x=x-1

z=z+3

if x>0

print z

o1={(x,1)}
o2={(x,1), (y,2)}
o3={(x,1), (y,2), (z,3)}
o4={(x,4), (y,2), (z,3), (z,5)}
o5={(x,4), (y,2), (z,5)}
o6={(x,4), (y,2), (z,5)}
o7={(x,4), (y,2), (z,5)}

The previous analysis shows that a single constant definition of 
y reaches node 5. Therefore, y can be replaced by 3 in node 5.

Uninitialized variables
Note: if the language being analyzed permits uninitialized 
variables, the above analysis can produce incorrect results.

29

CFG

x=100

y=3

z=0

x=x-1

z=z+y

if x>0

1

5

2

3

4

6

equations

o1={(x,1)}
o2={(z,2)} " o1!z

o3={(x,3)} " (o2 " o6)!x

o4={(z,4)} " o3!z

o5={(y,5)} " o4!y

o6=o5

solution

o1={(x,1)}
o2={(x,1), (z,2)}
o3={(x,3), (y,5), (z,2), (z,4)}
o4={(x,3), (y,5), (z,4)}
o5={(x,3), (y,5), (z,4)}
o6={(x,3), (y,5), (z,4)}

The solution can make us believe that y can safely 
be replaced by the value 3 in node 4, as before, 
but this is clearly wrong!

Uninitialized variables
If the language being analyzed permits uninitialised variables, 
all variables should be recorded as “initialized in some 
unknown location” at the entry of the first node!

30

equations

o1={(x,1), (y,?), (z,?)}
o2={(z,2)} " o1!z

o3={(x,3)} " (o2 " o6)!x

o4={(z,4)} " o3!z

o5={(y,5)} " o4!y

o6=o5

solution

o1={(x,1), (y,?), (z,?)}
o2={(x,1), (y,?), (z,2)}
o3={(x,3), (y,?), (y,5), (z,2), 
(z,4)}
o4={(x,3), (y,?), (y,5), (z,4)}
o5={(x,3), (y,5), (z,4)}
o6={(x,3), (y,5), (z,4)}

CFG

x=100

y=3

z=0

x=x-1

z=z+y

if x>0

1

5

2

3

4

6



Analysis #4
Very busy expressions

Very busy expression

An expression is very busy at some program point if it will 
definitely be evaluated before its value changes.

Dataflow analysis can approximate the set of very busy 
expressions for all program points. The result of that analysis 
can then be used to perform code hoisting: the computation of 
a very busy expression can be performed at the earliest point 
where it is busy.

32

Intuitions

Intuitively, an expression is very busy after a node if it is very 
busy in all of its successors.

Moreover, an expression is very busy before node n if it is 
either evaluated by n itself, or very busy after n and not killed 
by n.

(A node kills an expression e if and only if it redefines a 
variable appearing in e.)

Finally, no expression is very busy after an exit node.

33

Equations

We associate to every node n a pair of variables (in,on) that give 
the set of expressions that are very busy when the node is 
entered or exited, respectively. These variables are defined as 
follows:

in = genVB(n) # (on \ killVB(n))

where genVB(n) is the set of expressions evaluated by n, 
and killVB(n) is the set of expressions killed by n,

on = is1 ! is2 ! … ! isk

where s1 … sk are the successors of n.

Substituting on in in, we obtain the following equation for in:

in = genVB(n) # [(is1 ! is2 ! … ! isk) \ killVB(n)]

34

Equation solving

We are interested in finding the largest sets of very busy 
expressions, as the information conveyed by a set increases 
with its size.

Therefore, to solve the equations by iteration, we initialize all 
sets with the set of all non-trivial expressions appearing in the 
program.

35

Example

36

CFG

t=a+b

u=a*b

if t<u

1

2

3

t=a-b u=a-b

t=t*u

4 5

6

equations

i1={a+b} " i2!t

i2={a*b} " i3!u

i3=i4 ! i5
i4={a-b} " i6!t

i5={a-b} " i6!u

i6={t*u}

solution

i1={a+b, a-b, a*b}
i2={a-b, a*b}
i3={a-b}
i4={a-b}
i5={a-b}
i6={t*u}

Notation:
S!x = S \ {all expressions using x}



Using very busy expressions

37

The previous analysis shows that a-b is very busy before the 
conditional. It can therefore be evaluated earlier.

original CFG

t=a+b

u=a*b

if t<u

1

2

3

t=a-b u=a-b

t=t*u

4 5

6

analysis result

i1={a-b, a*b, a+b}
i2={a-b, a*b}
i3={a-b}
i4={a-b}
i5={a-b}
i6={t*u}

optimised CFG

t=a+b

u=a*b

if t<u

t=v u=v

t=t*u

v=a-b

Classification of
dataflow analyses

Equations summary

39

Analysis Input equation Output equation

available 
expressions

live 
variables

reaching 
definitions

very busy 
expressions

in =
  op1 ! op2 ! … ! opk

on =
  genAE(n) " (in \ killAE(n))

in =
  genLV(n) # (on \ killLV(n))

on =
  is1 # is2 # … # isk

in =
  op1 " op2 " … " opk

on =
  genRD(n) # (in \ killRD(n))

in =
  genVB(n) # (on \ killVB(n))

on =
  is1 ! is2 ! … ! isk

Taxonomy

40

Analyses for which the property of a node depends on those of 
its predecessors – e.g. available expressions, reaching 
definitions – are called forward analyses.

Analyses for which the property of a node depends on those of 
its successors – e.g. very busy expressions, live variables – are 
called backward analyses.

Analyses for which a property must be true in all successors or 
predecessors of a node to be true in that node – e.g. available, 
very busy expressions –  are called must analyses.

Analyses for which a property must be true in at least one 
successor or predecessor of a node to be true in that node – 
e.g. reaching definitions, live variables – are called may 
analyses.

Speeding-up
dataflow analyses

Speeding-up analyses

Several techniques can be used to speed up the various 
dataflow analyses:

• an algorithm based on a work-list can avoid useless 
computations,

• the equations can be ordered in order to propagate 
information faster,

• the analyses can be performed on smaller control-flow 
graphs, where nodes are basic blocks instead of individual 
instructions,

• bit-vectors can be used to represent sets.

42



Running example
We will reuse the live variable analysis example to illustrate 
the techniques used to speed up dataflow analyses.

43

equations

i1 = i2 \ {x}
i2 = i3 \ {y}
i3 = {x, y} " (i4 " i5)

i4 = {x} " (i6 \ {z})

i5 = {y} " (i6 \ {z})

i6 = {z}

solution

i1 = {}
i2 = {x}
i3 = {x, y}
i4 = {x}
i5 = {y}
i6 = {z}

CFG

1 x=read-int

2 y=read-int

3 if x<y

4 z=x 5 z=y

6 print z

Base case: iteration
Computing the solution to the equations using the standard 
iterative technique requires 3 iterations, each of which requires 
6 computations, for a total of 18 computations:

44

Iteration i1 i2 i3 i4 i5 i6

0

1

2

3

{!} {!} {!} {!} {!} {!}

{ } { } { x, y } { x } { y } { z }

{ } { x!} { x, y } { x } { y } { z }

{ } { x!} { x, y } { x } { y } { z }

i1 = i2\{x}, i2 = i3\{y}, i3 = {x,y} " (i4 " i5),

i4 = {x} " (i6\{z}), i5 = {y} " (i6\{z}), i6 = {z}

Work-list algorithm

Computing the fixed point by simple iteration as we did works, 
but is wasteful as the information for all nodes is re-computed 
at every iteration.

It is possible to do better by remembering, for every variable v, 
the set dep(v) of the variables whose value depends on the 
value of v itself.

Then, whenever the value of some variable v changes, we only 
re-compute the value of the variables that belong to
dep(v).

45

Work-list algorithm in Scala

def solve[T](Eqs: Array[(Int => T) => T],
             dep: Int => List[Int],
             init: T): (Int => T) = {
  def loop(q: List[Int], sol: Map[Int,T]): (Int => T) =
    q match {
      case i :: is =>
        val y = Eqs(i)(sol)
        if (y == sol(i))
          loop(is, sol)
        else
          loop(is ::: (dep(i) diff q), sol + i->y)
      case Nil =>
        sol
    }
  loop(List.range(0, Eqs.length),
       Map.empty withDefaultValue init)

46

Work-list

47

It. q i1 i2 i3 i4 i5 i6

0 [i1,i2,i3,i4,i5,i6] {} {} {} {} {} {}

1 [i2,i3,i4,i5,i6] {} {} {} {} {} {}

2 [i3,i4,i5,i6] {} {} {} {} {} {}

3 [i4,i5,i6,i2] {} {} {x,y} {} {} {}

4 [i5,i6,i2,i3] {} {} {x,y} {x} {} {}

5 [i6,i2,i3] {} {} {x,y} {x} {y} {}

6 [i2,i3,i4,i5] {} {} {x,y} {x} {y} {z}

7 [i3,i4,i5,i1] {} {x} {x,y} {x} {y} {z}

8 [i4,i5,i1] {} {x} {x,y} {x} {y} {z}

9 [i5,i1] {} {x} {x,y} {x} {y} {z}

10 [i1] {} {x} {x,y} {x} {y} {z}

11 [] {} {x} {x,y} {x} {y} {z}

i1 = i2\{x}, i2 = i3\{y}, i3 = {x,y} " (i4 " i5),

i4 = {x} " (i6\{z}), i5 = {y} " (i6\{z}), i6 = {z}

Node ordering

48

Using the work-list, “only” 11 computations were required to 
compute the result.

It is however clear that the process could be even faster if the 
elements of the work-list were ordered in the reverse order. 
This is because live variables analysis is a backward analysis.

The goal of node ordering is to order the elements of the work-
list in such a way that the solution is computed as fast as 
possible.



(Reverse) post-order
For backward analyses, ordering the variables in the work-list 
according to a post-order traversal of the CFG nodes speeds up 
convergence. For forward analyses, reverse post-order has the 
same characteristic.

49

CFG

1

2

3

4 5

6

Post-order:
  6 5 4 3 2 1  or  6 4 5 3 2 1
Reverse post-order:
  1 2 3 4 5 6  or  1 2 3 5 4 6

Note: reverse post-order is not the same 
as pre-order!
Pre-order:
  1 2 3 4 6 5  or  1 2 3 5 6 4

Work-list with node ordering
By ordering the nodes in post-order, only 6 computations are 
required to obtain the solution.

50

It. q i1 i2 i3 i4 i5 i6

0 [i6,i5,i4,i3,i2,i1] {} {} {} {} {} {}

1 [i5,i4,i3,i2,i1] {} {} {} {} {} {z}

2 [i4,i3,i2,i1] {} {} {} {} {y} {z}

3 [i3,i2,i1] {} {} {} {x} {y} {z}

4 [i2,i1] {} {} {x,y} {x} {y} {z}

5 [i1] {} {x} {x,y} {x} {y} {z}

6 [] {} {x} {x,y} {x} {y} {z}

i1 = i2\{x}, i2 = i3\{y}, i3 = {x,y} " (i4 " i5),

i4 = {x} " (i6\{z}), i5 = {y} " (i6\{z}), i6 = {z}

Working with basic blocks

Until now, CFG nodes were single instructions. In practice, 
basic blocks tend to be used as nodes, to reduce the size of the 
CFG.

When dataflow analysis is performed on a CFG composed of 
basic blocks, a pair of variables is attached to every block, not 
to every instruction.

Once the solution is known for basic blocks, computing the 
solution for individual instructions is easy.

51

CFG with basic blocks

52

equations

i1 = (i2 " i3) \ {x, y}

i2 = {x} " (i4 \ {z})

i3 = {y} " (i4 \ {z})

i4 = {z}

solution

i1 = {}
i2 = {x}
i3 = {y}
i4 = {z}

The solution for individual 
instructions is computed from 
the basic-block solution, in a 
single pass – here backwards:

i1c = {x, y} " (i2 " i3) = {x, y}

i1b = i1c \ {y} = {x}
i1a = i1b \ {x} = {}

CFG

1

x=read-int

y=read-int

if x<y

2 z=x 3 z=y

4 print z

1a

1b

1c

Bit vectors

53

All dataflow analyses we have seen work on sets of values.

If these sets are dense, a good way to represent them is to use 
bit vectors: a bit is associated to every possible element of the 
set, and its value is 1 if and only if the corresponding element 
belongs to the set.

On such a representation, set union is bitwise-or, set 
intersection is bitwise-and, set difference is bitwise-and 
composed with bitwise-negation.

Bit vector example

54

original equations

i1 = i2 \ {x}
i2 = i3 \ {y}
i3 = {x, y} " (i4 " i5)

i4 = {x} " (i6 \ {z})

i5 = {y} " (i6 \ {z})

i6 = {z}

bit vector equations

i1 = i2 & ~100
i2 = i3 & ~010
i3 = 110 | (i4 | i5)
i4 = 100 | (i6 & ~001)
i5 = 010 | (i6 & ~001)
i6 = 001

bit vector solution

i1 = 000
i2 = 100
i3 = 110
i4 = 100
i5 = 010
i6 = 001

original solution

i1 = {}
i2 = {x}
i3 = {x, y}
i4 = {x}
i5 = {y}
i6 = {z}



Summary

55

Dataflow analysis is a framework that can be used to 
approximate various properties about programs.

We have seen how to use the dataflow analysis framework to 
approximate liveness, available expressions, very busy 
expressions and reaching definitions. The result of those 
analysis can be used to perform various optimizations like 
dead-code elimination, constant propagation, etc.


