
Tail call elimination
Michel Schinz

Advanced Compiler Construction – 2009-04-03

Tail calls
and their elimination

Loops in functional languages

Several functional programming languages do not have an
explicit looping statement. Instead, programmers resort to
recursion to loop.
For example, the central loop of a Web server written in
Scheme might look like this:
(define web-server-loop
 (lambda ()
 (wait-for-connection)
 (fork handle-connection)
 (web-server-loop)))

3

The problem

Unfortunately, recursion is not equivalent to the looping
statements usually found in imperative languages: recursive
function calls, like all calls, consume stack space while loops
do not...
In our example, this means that the Web sever will eventually
crash because of a stack overflow – this is clearly
unacceptable!
A solution to this problem must be found...

4

The solution

In our example, it is obvious that the recursive call to web-
server-loop could be replaced by a jump to the beginning
of the function. If the compiler could detect this case and
replace the call by a jump, our problem would be solved!
This is the idea behind tail call elimination.

5

Tail calls

The reason why the recursive call of web-server-loop
could be replaced by a jump is that it is the last action taken by
the function :
(define web-server-loop
 (lambda ()
 (wait-for-connection)
 (fork handle-connection)
 (web-server-loop)))
Calls in terminal position – like this one – are called tail calls.
This particular tail call also happens to target the function in
which it is defined. It is therefore said to be a recursive tail
call.

6

Tail calls examples

In the functions below, all calls are underlined. Which ones
are tail calls?
(define map
 (lambda (f l)
 (if (null? l)
 l
 (cons (f (car l))
 (map f (cdr l))))))
(define fold
 (lambda (f z l)
 (if (null? l)
 z
 (fold f (f z (car l)) (cdr l)))))

7

Tail calls examples

In the functions below, all calls are underlined. Which ones
are tail calls?
(define map
 (lambda (f l)
 (if (null? l)
 l
 (cons (f (car l))
 (map f (cdr l))))))
(define fold
 (lambda (f z l)
 (if (null? l)
 z
 (fold f (f z (car l)) (cdr l)))))

7

tail call

Tail calls examples

In the functions below, all calls are underlined. Which ones
are tail calls?
(define map
 (lambda (f l)
 (if (null? l)
 l
 (cons (f (car l))
 (map f (cdr l))))))
(define fold
 (lambda (f z l)
 (if (null? l)
 z
 (fold f (f z (car l)) (cdr l)))))

7

tail call

recursive
tail call

Tail call elimination

When a function performs a tail call, its own activation frame
is dead, as by definition nothing follows the tail call.
Therefore, it is possible to first free the activation frame of a
function about to perform such a call, then load the parameters
for the call, and finally jump to the function’s code.
This technique is called tail call elimination (or optimization),
here abbreviated TCE.

8

TCE example

Consider the following function definition and call:
(define sum
 (lambda (z l)
 (if (null? l)
 z
 (sum (+ z (car l)) (cdr l)))))
(sum 0 (list3 1 2 3))
How does the stack evolve, with and without tail call
elimination?

9

TCE example
Without tail call elimination, each recursive call to sum makes
the stack grow, to accommodate activation frames.

10

0
(1 2 3)

time

TCE example
Without tail call elimination, each recursive call to sum makes
the stack grow, to accommodate activation frames.

10

0
(1 2 3)

0
(1 2 3)

1
(2 3)

time

TCE example
Without tail call elimination, each recursive call to sum makes
the stack grow, to accommodate activation frames.

10

0
(1 2 3)

0
(1 2 3)

1
(2 3)

0
(1 2 3)

1
(2 3)

3
(3)

time

TCE example
Without tail call elimination, each recursive call to sum makes
the stack grow, to accommodate activation frames.

10

0
(1 2 3)

0
(1 2 3)

1
(2 3)

0
(1 2 3)

1
(2 3)

3
(3)

0
(1 2 3)

1
(2 3)

3
(3)
6
()

time

TCE example
With tail call elimination, the dead activation frames are freed
before the tail call, resulting in a stack of constant size.

11

0
(1 2 3)

time

TCE example
With tail call elimination, the dead activation frames are freed
before the tail call, resulting in a stack of constant size.

11

0
(1 2 3)

1
(2 3)

time

TCE example
With tail call elimination, the dead activation frames are freed
before the tail call, resulting in a stack of constant size.

11

0
(1 2 3)

1
(2 3)

3
(3)

time

TCE example
With tail call elimination, the dead activation frames are freed
before the tail call, resulting in a stack of constant size.

11

0
(1 2 3)

1
(2 3)

3
(3)

6
()

time

Tail call optimization?

Tail call elimination is more than just an optimization! Without
it, writing a program that loops endlessly using recursion and
does not produce a stack overflow is simply impossible.
For that reason, full tail call elimination is actually required in
some languages, e.g. Scheme.
In other languages, like C, it is simply an optimization
performed by some compilers in some or all cases.

12

Tail call elimination for
minischeme

TCE example

14

(define succ
 (lambda (x)
 (add 1 x)))
(define add
 ...)

succ: ; ...
 LINT R27 add
 LINT R1 1
 LINT R2 2
 LOAD R2 R30 R2
 LINT R29 ret
 JEQ R27 R0 R0
ret:
 LINT R2 1
 LOAD R29 R30 R2
 LOAD R30 R30 R0
 JEQ R29 R0 R0

Without TCE With TCE
succ: ; ...
 LINT R27 add
 LINT R1 1
 LINT R2 2
 LOAD R2 R30 R2
 LINT R3 1
 LOAD R29 R30 R3
 LOAD R30 R30 R0
 JEQ R27 R0 R0

unlink
activation

frame

Implementing TCE

Tail call elimination is implemented by:
1. identifying tail calls in the program,
2. compiling those tail calls specially, by deallocating the

activation frame of the caller before jumping to the called
function.

We already know how to compile tail calls, but we did not
explain yet how to identify them.

15

Identifying tail calls

To identify tail calls, we first assume that all calls are marked
with a unique number. We then define a function T that returns
the marks corresponding to the tail calls.
For example, given the following expression:
(lambda (x)
 (if 1(even? x) 2(g 3(h x)) 4(h 5(g x))))
T produces the set { 2, 4 }.

16

Identifying tail calls

T[(lambda (args) body)] = T’[body]
where the auxiliary function T’ is defined as follows:
T’[(let ((n v)) body)] = T’[body]
T’[(begin body1 … bodyn)] = T’[bodyn]
T’[(if e1 e2 e3)] = T’[e2] ∪ T’[e3]

T’[(and e1 e2)] = T’[e2]
T’[(or e1 e2)] = T’[e2]
T’[m(e1 … en)] when e1 is not a primitive = { m }
T’[anything else] = ∅

17

Removing the epilogue

Usually, functions end with an epilogue that de-allocates the
stack frame. But this epilogue is not necessary for functions
that end only with tail calls.
The functions E below determines whether a function requires
an epilogue or not, using an auxiliary function E’.
E[(lambda (args) body)] = E’[body]
E’[(let ((n v)) body)] = E’[body]
E’[(begin body1 … bodyn)] = E’[bodyn]
E’[(if e1 e2 e3)] = E’[e2] ∨ E’[e3]

E’[(e1 … en)] when e1 is not a primitive = False
E’[anything else] = True

18

Tail call elimination in
uncooperative
environments

TCE in various environments

When generating assembly language, it is easy to perform TCE,
as the target language is sufficiently low-level to express the
deallocation of the activation frame and the following jump.
When targeting higher-level languages, like C or the JVM, this
becomes difficult – although recent VMs like .NET’s support
tail calls. Let’s explore several techniques that have been
developed to perform TCE in such contexts.

20

Benchmark program
To illustrate how the various techniques work, we will use a
benchmark program in C that tests whether a number is even,
using two mutually tail-recursive functions.
When no technique is used to manually eliminate tail calls, it
looks as follows. And unless the C compiler performs tail call
elimination – like GCC does with full optimization – it crashes
with a stack overflow at run time.

21

int even(int x) {
 return x == 0 ? 1 : odd(x - 1);
}
int odd(int x) {
 return x == 0 ? 0 : even(x - 1);
}
int main(int argc, char* argv[]) {
 printf("%d\n", even(300000000));
}

Single function approach

The “single function” approach consists in compiling the
whole program to a single function of the target language.
This makes it possible to compile tail calls to simple jumps
within that function, and other calls to recursive calls to it.
This technique is rarely applicable in practice, due to
limitations in the size of functions of the target language.

22

Single function approach in C

23

typedef enum { fun_even, fun_odd } fun_id;

int wholeprog(fun_id fun, int x) {
 switch (fun) {
 case fun_even: goto even;
 case fun_odd: goto odd;
 }

 even:
 if (x == 0) return 1;
 x = x - 1;
 goto odd;
 odd:
 if (x == 0) return 0;
 x = x - 1;
 goto even;
}

int main(int argc, char* argv[]) {
 printf("%d\n", wholeprog(fun_even, 300000000));
}

Trampolines

With trampolines, functions never perform tail calls directly.
Rather, they return a special value to their caller, informing it
that a tail call should be performed. The caller performs the
call itself.
For this scheme to work, it is necessary to check the return
value of all functions, to see whether a tail call must be
performed. The code which performs this check is called a
trampoline.

24

Trampolines in C

25

typedef void* (*fun_ptr)(int);
struct { fun_ptr fun; int arg; } resume;
void* even(int x) {
 if (x == 0) return (void*)1;
 resume.fun = odd;
 resume.arg = x - 1;
 return &resume;
}
void* odd(int x) {
 if (x == 0) return (void*)0;
 resume.fun = even;
 resume.arg = x - 1;
 return &resume;
}
int main(int argc, char* argv[]) {
 void* res = even(300000000);
 while (res == &resume)
 res = (resume.fun)(resume.arg);
 printf("%d\n",(int)res);
}

Extended trampolines

26

Extended trampolines trade some of the space savings of
standard trampolines for speed.
Instead of returning to the trampoline on every tail call, the
number of successive tail calls is counted at run time, using a
tail call counter (tcc) passed to every function. When that
number reaches a predefined limit l, a non-local return is
performed to transfer control to a trampoline “waiting” at the
bottom of the chain, thereby reclaiming l activation frames in
one go.

C’s setjmp / longjmp
Extended trampolines are more efficient when a non-local
return is used to free dead stack frames.
In C, non-local returns can be performed using the standard
functions setjmp and longjmp, which can be seen as a form
of goto that works across functions:

• setjmp(b) saves its calling environment in b, and
returns 0,

• longjmp(b,v) restores the environment stored in b, and
proceeds like if the call to setjmp had returned v instead
of 0.

In the following slides, we use _setjmp and _longjmp,
which do not save and restore the signal mask and are
therefore much more efficient.

27

Extended trampolines in C

28

typedef int (*fun_ptr)(int, int);
struct { fun_ptr fun; int arg; } resume;
jmp_buf jmp_env;

int even(int tcc, int x) {
 if (tcc > TC_LIMIT) {
 resume.fun = even;
 resume.arg = x;
 _longjmp(jmp_env, -1);
 }
 return (x == 0) ? 1 : odd(tcc + 1, x - 1);
}
int odd(int tcc, int x) { /* similar to even */ }

int main(int argc, char* argv[]) {
 int res = (_setjmp(jmp_env) == 0)
 ? even(0, 300000000)
 : (resume.fun)(0, resume.arg);
 printf("%d\n",res);
}

Baker’s technique

29

(Henry) Baker’s technique consists in first transforming the
whole program to continuation-passing style.
One important property of CPS is that all calls are tail calls.
Consequently, it is possible to periodically shrink the whole
stack using a non-local return.

Baker's technique in C

30

typedef void (*cont)(int);
typedef void (*fun_ptr)(int, cont);
int tcc = 0;
struct { fun_ptr fun; int arg; cont k; } resume;
jmp_buf jmp_env;
void even_cps(int x, cont k) {
 if (++tcc > TC_LIMIT) {
 tcc = 0;
 resume.fun = even_cps;
 resume.arg = x;
 resume.k = k;
 _longjmp(jmp_env, -1);
 }
 if (x == 0) (*k)(1); else odd_cps(x - 1, k);
}
void odd_cps(int x, cont k) { /* similar to even_cps */ }
int main(int argc, char* argv[]) {
 if (_setjmp(jmp_env) == 0) even_cps(300000000, main_1);
 else (resume.fun)(resume.arg, resume.k);
}
void main_1(int val) { printf("%d\n", val); exit(0); }

Benchmark results

31

Initial version

Single function

Baker’s technique

Extended trampolines

Trampolines

0 5 10 15 20

10.4

4.3

4.1

1.0

1.0

19.9

10.6

13.6

7.0

0

no optimizations full optimizations

The programs presented earlier were compiled with GCC
v4.01 and two different optimization settings (-O0 and -O3).
The normalized running times observed on an Intel Core 2
Duo are presented below.
Notice that the initial version compiled without optimization
produces a stack overflow, hence the absence of timing.

Techniques summary

32

1 2 3 4 5 6 7 8None

1 2 3 4Single function

1 2 2 2 2 3 3 4Trampolines

Baker's technique 1 2 3 4 5 6 7 n

Ext. trampolines 1 2 3 4 3 4 5 6

non-tail
tail

calls

normal
trampoline
non-local trampoline

returns
d

stack frames

d: depth

Summary

33

Tail call elimination consists in compiling tail calls specially, so
that the activation frame of the caller is freed before the called
function is invoked.
This technique reduces memory usage and makes it possible to
write loops using recursion without overflowing the stack.
Tail call elimination can be hard to implement efficiently when
the target platform is uncooperative.

