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Control flow of
Web applications 



The adder application

The following Scheme program asks for two numbers, and 
displays their sum – assuming the obvious definitions for 
prompt-int and display-int:
(let ((n1 (prompt-int "n1=")))
  (let ((n2 (prompt-int "n2=")))
    (display-int "n1+n2=" (+ n1 n2))))
Its control flow is completely obvious...
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The adder Web application

Let’s assume that we want to take our adder application and 
turn it into a Web application, with the requirement that every 
interaction happens on a separate page.
That is, we want to use a first Web page to ask for the first 
number, a second page to ask for the second number, and a 
third one to display their sum.
If we suppose that we have the proper primitives at our 
disposal, this should be trivial:
(let ((n1 (web-prompt-int "n1=")))
  (let ((n2 (web-prompt-int "n2=")))
    (web-display-int "n1+n2=" (+ n1 n2))))
What about control flow?
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Browser power

When interacting with a Web application, the user has some 
very powerful means to alter its flow of control:

1. the “back” button can be used to go back to a previous 
state,

2. bookmarks can be used to take a snapshot of the 
execution state,

3. URL copying can be used to duplicate state.
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Control flow comparison
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Solutions for Web applications
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Several solutions have been developed to deal with the 
unusual control flow of Web programs:

1. do nothing and let the programmer deal with the 
complexity – e.g. PHP,

2. tame the browser by disabling both the “back” button and 
cloning – e.g. JWIG,

3. use continuations to please the user and the programmer – 
e.g. Seaside.



Continuations



Suspended computations

In our adder application, each time some data has to be 
obtained from the user, the execution of the program is 
suspended. It is then resumed as soon as the user submits the 
data.
The power of the Web version of our application comes from 
the fact that those suspended computations are given a name: 
the URL associated with them! The user can therefore 
manipulate those suspended computations at will. She can for 
example resume the same suspended computation several 
times, something that is not possible with the non-Web version 
of the application.
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Continuations

A continuation is a data structure representing a suspended 
computation.
The main operation that can be performed on a continuation is 
resuming – or throwing – it. When a continuation k is 
resumed, the current execution of the program is replaced by 
the execution of k’s computation.
A continuation describes how to continue a suspended 
computation, hence the name.
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Current continuation
At any given point during the execution of a program, it is 
possible to talk about the current continuation. This 
continuation describes what still needs to be done in order to 
complete the running program.
For example, imagine that our adder application is used to sum 
15 and 17. How can the current continuation be described at 
various points of the execution?

11
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Continuations and the Web

In a Web application, execution is suspended each time a page 
is presented to the user. When the user proceeds – by clicking 
on a link or by submitting a form – execution is resumed.
In terms of continuations, this means that the current 
continuation is saved on the server whenever a page is 
displayed, and associated with a (unique) URL. That saved 
continuation is resumed later when the user requests its URL.
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Functions and continuations

In any programming language, when a function f calls a 
function g, the execution of f is suspended while g is running, 
and resumed as soon as g is finished.
In terms of continuations, calling a function therefore consists 
in saving the current continuation, and then proceed with the 
execution of the called function. Returning from a function 
consists in restoring the most recently saved continuation.
In most languages, continuations can only be manipulated in 
that indirect fashion, through function calls and returns. 
However, some languages like Scheme offer first-class 
continuations, that is the ability to manipulate continuations 
like all other values.
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Continuations in Scheme



Exposing continuations

How should (first-class) continuations be exposed to the 
programmer?
In an object-oriented language, continuations could be 
represented as a class, with methods to obtain the current 
continuation, or resume an existing continuation.
In a functional language, continuations can be represented as 
functions. Invoking such “continuation functions” resumes the 
associated continuation. This is how Scheme and several other 
languages expose continuations.
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Continuations in Scheme

Scheme provides the primitive call-with-current-
continuation – often abbreviated to call/cc – to obtain 
the current continuation.
This primitive expects a function as argument, and calls that 
function with the current continuation as argument, reified as a 
standard Scheme function.
If that function is invoked later, its continuation will be 
resumed, and replace the current continuation of the program. 
Example:
(call/cc (lambda (k) (k 10) 20))
  ⇒ 10
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Understanding call/cc

To understand call/cc, it is useful to distinguish two cases:
1. If the continuation is not invoked, then execution proceeds 

like if call/cc was not present. Example:
(call/cc (lambda (k) (+ 5 6)))
  ⇒ 11

2. If the continuation is invoked with some value v, then 
execution proceeds like if the call to call/cc returned 
immediately the value v. Example:
(call/cc (lambda (k) (+ (k 5) 6)))
  ⇒ 5
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Examples
(call/cc (lambda (k) 10))
  ⇒ 10
(call/cc (lambda (k) (k 10)))
  ⇒ 10
(+ 1 (call/cc (lambda (k) (k 10) 20)))
  ⇒ 11
(call/cc (lambda (k) (k (k (k 20)))))
  ⇒ 20
(call/cc (lambda (k1)
           (+ (call/cc (lambda (k2) 5))
              (k1 6))))
  ⇒ 6
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Example use: local return

Continuations can be used to return immediately from a 
function, like the return statement in Java.
This is achieved by obtaining the current continuation at the 
beginning of the function, and invoking it to return.
(define contains-negative?
  (lambda (l)
    (call/cc
     (lambda (return)
       (for-each (lambda (e)
                   (if (< e 0)
                     (return #t)))
                 l)
       #f))))
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Example: generators

Continuations can also be used to implement generators (a.k.a 
iterators) in the style of Python or C#.
Trivial example use:
(define ping-pong
  (generator
   (lambda (gen)
     (generator-yield gen "ping")
     (generator-yield gen "pong"))))
(generator-next ping-pong) ⇒ "ping"
(generator-next ping-pong) ⇒ "pong"
(generator-next ping-pong) ⇒ #f
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Preliminaries: references
To implement generators, we make use of references, defined 
as follows – they are basically one-element mutable vectors:
(define ref
  (lambda (init)
    (vector init)))
(define ref-get
  (lambda (ref)
    (vector-ref ref 0)))
(define ref-set!
  (lambda (ref new-value)
    (vector-set! ref 0 new-value)))
(define ref-swap!
  (lambda (ref new-value)
    (let ((old-value (ref-get ref)))
      (ref-set! ref new-value)
      old-value)))
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Generators
A generator is a reference containing alternatively the 
continuation of the generator function – when the main 
program is executing – and the continuation of the main 
program – when the generator function is executing.
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(define swap-control
  (lambda (k-ref val)
    (call/cc
     (lambda (k)
       ((ref-swap! k-ref k)
        val)))))

(define swap-for-ever
  (lambda (gen)
    (swap-control gen #f)
    (swap-for-ever gen)))

(define generator
  (lambda (f)
    (ref
     (lambda (gen)
       (f gen)
       (swap-for-ever gen)))))

(define generator-yield
  swap-control)

(define generator-next
  (lambda (gen)
    (swap-control gen gen)))
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Implementing call/cc

To implement call/cc, it must be possible to save the current 
continuation at some point, and restore it later. This can be 
achieved using two different techniques:

1. a low-level technique, which consists in saving and 
restoring the continuations that are maintained at run time 
during function calls and returns, and

2. a more high-level technique, which consists in 
transforming the source program to ensure that the current 
continuation is always explicitly represented as a function, 
and therefore easy to manipulate.

We will explore both techniques in turn.
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Machine continuations

As explained earlier, all languages have continuations, as they 
are used to implement function calls:

• before a function call, the current continuation is saved,
• when a function returns, the most recently saved 

continuation is resumed.
However, these continuations – that we will call machine 
continuations – are usually not first-class values that can be 
manipulated by the programmer. The aim of call/cc is 
precisely to turn those continuations into first-class values!
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call/cc

Assuming that our language is equipped with two primitives to 
save and restore machine continuations, call/cc is easy to 
implement:
(define call/cc
  (lambda (f)
    (let ((cc (get-machine-continuation)))
      (f (lambda (r)
           (set-machine-continuation! cc)
           r)))))
It remains to be seen how those two primitives can be 
implemented.
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Continuation representation

Where are machine continuations stored? In other words, 
where is the information necessary to return from a function 
call – return address, register contents – stored?
The answer depends on the machine being used, and on 
calling conventions.
In the simplest case, all that information is stored on the stack 
before a function call. Therefore, the frame pointer represents 
the continuation of a function!
In more complex cases, the information is stored both in the 
stack and in callee-saved registers. Some more work is 
necessary to save and restore continuations, but the basic idea 
is the same.
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The stack

In a language without first-class continuations, the following 
two properties are true:

• continuations are saved and resumed in LIFO order,
• continuations can only be resumed once, which implies 

that they can be freed after having been resumed.
These properties make it possible to use a stack to store 
continuations. Unfortunately, they do not hold for languages 
with first-class continuations!
Implementations of such languages either abandon the stack 
completely and allocate all activation frames on the heap, or 
lazily copy those frames from the stack to the heap when 
continuations are saved.
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Technique #2
Continuation-passing 
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Continuations “by hand”

What can we do if we want to use continuations but the 
language we use doesn’t offer them?
One idea is to transform the program to explicitly represent 
continuations using functions.
A program is said to be in continuation-passing style (CPS) if:

• all functions receive a continuation as an additional 
argument, and

• they invoke that continuation with their result instead of 
returning that result to the caller – i.e. no function ever 
returns.
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CPS example

To illustrate CPS, we will use the following simplified variant of 
our adder program:
(print-int (+ (read-int) (read-int)))
To transform this program to CPS, we need to use functions to 
represent the current continuation at all possible points of its 
execution: just after reading the first integer, after reading the 
second, etc.
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CPS example
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33

C
PSCPS version of 

read-int

CPS 
version of +

(read-int/cps
 (lambda (n1)
   (read-int/cps
    (lambda (n2)
      (+/cps n1 n2
             (lambda (sum)
               (print-int sum)))))))

(print-int (+ (read-int) (read-int)))



Primordial continuation
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In the CPS version of our example, we cheated by using the 
normal version of print-int. Rigorously, we should have 
used the CPS version, print-int/cps. But what 
continuation should it get?
More generally, what is the primordial continuation, i.e. the 
continuation of a complete program?
A function halting execution is a good choice, which could be 
defined as follows given a halt primitive:
(lambda (res) (halt))



Defining call/cc/cps

As long as the program is not in CPS, it is not possible to define 
call/cc as a function, it must be a primitive.
However, as soon as the program is in CPS, defining the CPS 
version of call/cc – i.e. call/cc/cps – is relatively 
simple.
To define it, it is useful to remember that the goal of call/
cc/cps is to reify the current continuation by making it 
available as a standard (CPS) function.
That function, when applied to an argument x, should invoke 
the continuation that was current at the time when call/cc/
cps was invoked, passing it x, and ignore the current 
continuation.
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Defining call/cc/cps

The definition of call/cc/cps is:
(define call/cc/cps
  (lambda (f k)
    (f (lambda (res ignored-k) (k res))
       k)))
Notice how the reified continuation ignores the current 
continuation (ignored-k) and invokes the captured one (k) 
instead.
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CPS conversion

As we have seen, we can offer continuations by first 
transforming the program to CPS, and then providing an 
implementation of call/cc/cps.
Doing this transformation by hand is tiresome and error-prone, 
the compiler should do it for us!
This is the idea of CPS conversion, which will be presented 
here as a function ⟦·⟧ mapping (a limited version of) core 
minischeme terms to equivalent terms in CPS.
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Limited core minischeme

The translation to CPS will be presented on a version of core 
minischeme with the following limitations:

• all functions take a single argument,
• all primitives take two arguments,
• top-level statements and definitions have been translated 

away, i.e. the program consists in a single expression.
Removing these limitations is easy and left as an exercise.
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Top-level expressions
The whole program can be transformed into a single 
expression by translating global definitions to assignments to 
elements of a vector of global values. Example:
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(define add
  (lambda (x y)
    (+ x y)))

(define succ
  (lambda (x)
    (add x 1)))

(print-char
 (succ #\a))

(let ((glb (vector 0 0)))
  (vector-set!
   glb 0
   (lambda (x y)
     (+ x y)))
  (vector-set!
   glb 1
   (lambda (x)
     ((vector-ref glb 0) x 1)))
  (print-char
   ((vector-ref glb 1) #\a)))
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Conversion outline

The basic idea of CPS conversion is to translate terms to 
functions that expect a continuation and invoke that 
continuation with the value of the term.
Therefore, all terms are translated to an expression with the 
following structure:
  (λ (k) some expression using k)

41
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Conversion to CPS
⟦x⟧ when x is a number or identifier =
 (λ (k) (k x))

⟦(λ (x) b)⟧ =
 (λ (k) (k (λ (x k2) (⟦b⟧ k2))))

⟦(f x)⟧ when f is not a primitive =
 (λ (k) (⟦f⟧ (λ (fv) (⟦x⟧ (λ (xv) (fv xv k))))))

⟦(p x y)⟧ when p is a primitive =
 (λ (k)
  (⟦x⟧ (λ (xv) (⟦y⟧ (λ (yv) (k (p xv yv)))))))

⟦(let ((n e)) b)⟧ =
  (λ (k) (⟦e⟧ (λ (n) (⟦b⟧ k))))
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Conversion to CPS

⟦(if c t e)⟧ =
 (λ (k) (⟦c⟧ (λ (cv) (if cv (⟦t⟧ k) (⟦e⟧ k)))))

⟦(and e1 e2)⟧ =
 (λ (k) (⟦e1⟧ (λ (e1v) (if e1v (⟦e2⟧ k) (k e1v)))))
⟦(or e1 e2)⟧ =
 (λ (k) (⟦e1⟧ (λ (e1v) (if e1v (k e1v) (⟦e2⟧ k)))))
⟦(begin e)⟧ = ⟦e⟧

⟦(begin e1 e2 …)⟧ =
 (λ (k) (⟦e1⟧ (λ (e1v) (⟦(begin e2 …)⟧ k))))
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Example translation
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(print-int (+ (read-int) (read-int)))

⟦·⟧

(lambda (k1)
  ((lambda (k2) (k2 print-int/cps))
   (lambda (fv1)
     ((lambda (k3)
        ((lambda (k4)
           ((lambda (k5)
              (k5 read-int/cps))
            (lambda (fv2) (fv2 k4))))
         (lambda (xv1)
           ((lambda (k6)
              ((lambda (k7) (k7 read-int/cps))
               (lambda (fv3) (fv3 k6))))
            (lambda (yv) (k3 (+ xv1 yv)))))))
      (lambda (xv2) (fv1 xv2 k1))))))

much more 
complicated, but 

equivalent to what 
we would obtain 

by hand



Administrative redexes
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As the previous example illustrates, the simple translation to 
CPS produces a lot of administrative redexes, i.e. redexes that 
do not correspond to redexes in the original term.
One of them is highlighted below:

(lambda (k1)
  ((lambda (k2) (k2 print-int/cps))
   (lambda (fv1)
     ((lambda (k3)
        ((lambda (k4)
           ((lambda (k5)
              (k5 read-int/cps))
            (lambda (fv2) (fv2 k4))))
         (lambda (xv1)
           ((lambda (k6)
              ((lambda (k7) (k7 read-int/cps))
               (lambda (fv3) (fv3 k6))))
            (lambda (yv) (k3 (+ xv1 yv)))))))
      (lambda (xv2) (fv1 xv2 k1))))))

reduces (in two steps) to
(read-int/cps k4)



Administrative redexes

By reducing all the administrative redexes in the previous 
example, we get the following term:
(lambda (k1)
  (read-int/cps
   (lambda (xv1)
     (read-int/cps
      (lambda (yv)
        (print-int/cps (+ xv1 yv) k1))))))
which is almost what we obtained by hand. The differences are 
due to the fact that we treated + as a primitive here, and did 
not cheat by using print-int instead of print-int/cps.
Good CPS translations – not presented here – completely avoid 
the creation of administrative redexes.
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Summary
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Continuations are the “ultimate” control operator. They can be 
used to implement many powerful concepts like threads, 
exceptions, etc.
Continuations can either be implemented in the target 
machine, by manipulating the call stack, or by a transformation 
of the program to continuation-passing style (CPS), done by the 
compiler.


