
Continuations
Michel Schinz

Advanced Compiler Construction – 2009-03-27

Control flow of
Web applications

The adder application

The following Scheme program asks for two numbers, and
displays their sum – assuming the obvious definitions for
prompt-int and display-int:
(let ((n1 (prompt-int "n1=")))
 (let ((n2 (prompt-int "n2=")))
 (display-int "n1+n2=" (+ n1 n2))))
Its control flow is completely obvious...

3

control
flow

The adder Web application

Let’s assume that we want to take our adder application and
turn it into a Web application, with the requirement that every
interaction happens on a separate page.
That is, we want to use a first Web page to ask for the first
number, a second page to ask for the second number, and a
third one to display their sum.
If we suppose that we have the proper primitives at our
disposal, this should be trivial:
(let ((n1 (web-prompt-int "n1=")))
 (let ((n2 (web-prompt-int "n2=")))
 (web-display-int "n1+n2=" (+ n1 n2))))
What about control flow?

4

Browser power

When interacting with a Web application, the user has some
very powerful means to alter its flow of control:

1. the “back” button can be used to go back to a previous
state,

2. bookmarks can be used to take a snapshot of the
execution state,

3. URL copying can be used to duplicate state.

5

Control flow comparison

6

Normal application Web application

read n1

read n2

print n1+n2

read n1

read n2

print n1+n2

read n2

print n1+n2

bookmark

duplicate

back

Solutions for Web applications

7

Several solutions have been developed to deal with the
unusual control flow of Web programs:

1. do nothing and let the programmer deal with the
complexity – e.g. PHP,

2. tame the browser by disabling both the “back” button and
cloning – e.g. JWIG,

3. use continuations to please the user and the programmer –
e.g. Seaside.

Continuations

Suspended computations

In our adder application, each time some data has to be
obtained from the user, the execution of the program is
suspended. It is then resumed as soon as the user submits the
data.
The power of the Web version of our application comes from
the fact that those suspended computations are given a name:
the URL associated with them! The user can therefore
manipulate those suspended computations at will. She can for
example resume the same suspended computation several
times, something that is not possible with the non-Web version
of the application.

9

Continuations

A continuation is a data structure representing a suspended
computation.
The main operation that can be performed on a continuation is
resuming – or throwing – it. When a continuation k is
resumed, the current execution of the program is replaced by
the execution of k’s computation.
A continuation describes how to continue a suspended
computation, hence the name.

10

Current continuation
At any given point during the execution of a program, it is
possible to talk about the current continuation. This
continuation describes what still needs to be done in order to
complete the running program.
For example, imagine that our adder application is used to sum
15 and 17. How can the current continuation be described at
various points of the execution?

11

ask for n1 ask for n2 print sum

n1=15 n2=17

Current continuation
At any given point during the execution of a program, it is
possible to talk about the current continuation. This
continuation describes what still needs to be done in order to
complete the running program.
For example, imagine that our adder application is used to sum
15 and 17. How can the current continuation be described at
various points of the execution?

11

ask for two
numbers n1 and
n2, print n1+n2

ask for n1 ask for n2 print sum

n1=15 n2=17

Current continuation
At any given point during the execution of a program, it is
possible to talk about the current continuation. This
continuation describes what still needs to be done in order to
complete the running program.
For example, imagine that our adder application is used to sum
15 and 17. How can the current continuation be described at
various points of the execution?

11

ask for two
numbers n1 and
n2, print n1+n2

ask for one
number n2, print

15+n2

ask for n1 ask for n2 print sum

n1=15 n2=17

Current continuation
At any given point during the execution of a program, it is
possible to talk about the current continuation. This
continuation describes what still needs to be done in order to
complete the running program.
For example, imagine that our adder application is used to sum
15 and 17. How can the current continuation be described at
various points of the execution?

11

ask for two
numbers n1 and
n2, print n1+n2

ask for one
number n2, print

15+n2

print 32

ask for n1 ask for n2 print sum

n1=15 n2=17

Current continuation
At any given point during the execution of a program, it is
possible to talk about the current continuation. This
continuation describes what still needs to be done in order to
complete the running program.
For example, imagine that our adder application is used to sum
15 and 17. How can the current continuation be described at
various points of the execution?

11

ask for two
numbers n1 and
n2, print n1+n2

ask for one
number n2, print

15+n2

print 32

ask for n1 ask for n2 print sum

n1=15 n2=17

stop

Continuations and the Web

In a Web application, execution is suspended each time a page
is presented to the user. When the user proceeds – by clicking
on a link or by submitting a form – execution is resumed.
In terms of continuations, this means that the current
continuation is saved on the server whenever a page is
displayed, and associated with a (unique) URL. That saved
continuation is resumed later when the user requests its URL.

12

Functions and continuations

In any programming language, when a function f calls a
function g, the execution of f is suspended while g is running,
and resumed as soon as g is finished.
In terms of continuations, calling a function therefore consists
in saving the current continuation, and then proceed with the
execution of the called function. Returning from a function
consists in restoring the most recently saved continuation.
In most languages, continuations can only be manipulated in
that indirect fashion, through function calls and returns.
However, some languages like Scheme offer first-class
continuations, that is the ability to manipulate continuations
like all other values.

13

Continuations in Scheme

Exposing continuations

How should (first-class) continuations be exposed to the
programmer?
In an object-oriented language, continuations could be
represented as a class, with methods to obtain the current
continuation, or resume an existing continuation.
In a functional language, continuations can be represented as
functions. Invoking such “continuation functions” resumes the
associated continuation. This is how Scheme and several other
languages expose continuations.

15

Continuations in Scheme

Scheme provides the primitive call-with-current-
continuation – often abbreviated to call/cc – to obtain
the current continuation.
This primitive expects a function as argument, and calls that
function with the current continuation as argument, reified as a
standard Scheme function.
If that function is invoked later, its continuation will be
resumed, and replace the current continuation of the program.
Example:
(call/cc (lambda (k) (k 10) 20))
 ⇒ 10

16

Understanding call/cc

To understand call/cc, it is useful to distinguish two cases:
1. If the continuation is not invoked, then execution proceeds

like if call/cc was not present. Example:
(call/cc (lambda (k) (+ 5 6)))
 ⇒ 11

2. If the continuation is invoked with some value v, then
execution proceeds like if the call to call/cc returned
immediately the value v. Example:
(call/cc (lambda (k) (+ (k 5) 6)))
 ⇒ 5

17

Examples
(call/cc (lambda (k) 10))
 ⇒ 10
(call/cc (lambda (k) (k 10)))
 ⇒ 10
(+ 1 (call/cc (lambda (k) (k 10) 20)))
 ⇒ 11
(call/cc (lambda (k) (k (k (k 20)))))
 ⇒ 20
(call/cc (lambda (k1)
 (+ (call/cc (lambda (k2) 5))
 (k1 6))))
 ⇒ 6

18

Example use: local return

Continuations can be used to return immediately from a
function, like the return statement in Java.
This is achieved by obtaining the current continuation at the
beginning of the function, and invoking it to return.
(define contains-negative?
 (lambda (l)
 (call/cc
 (lambda (return)
 (for-each (lambda (e)
 (if (< e 0)
 (return #t)))
 l)
 #f))))

19

true in
Schemefalse in

Scheme

Example: generators

Continuations can also be used to implement generators (a.k.a
iterators) in the style of Python or C#.
Trivial example use:
(define ping-pong
 (generator
 (lambda (gen)
 (generator-yield gen "ping")
 (generator-yield gen "pong"))))
(generator-next ping-pong) ⇒ "ping"
(generator-next ping-pong) ⇒ "pong"
(generator-next ping-pong) ⇒ #f

20

Preliminaries: references
To implement generators, we make use of references, defined
as follows – they are basically one-element mutable vectors:
(define ref
 (lambda (init)
 (vector init)))
(define ref-get
 (lambda (ref)
 (vector-ref ref 0)))
(define ref-set!
 (lambda (ref new-value)
 (vector-set! ref 0 new-value)))
(define ref-swap!
 (lambda (ref new-value)
 (let ((old-value (ref-get ref)))
 (ref-set! ref new-value)
 old-value)))

21

Generators
A generator is a reference containing alternatively the
continuation of the generator function – when the main
program is executing – and the continuation of the main
program – when the generator function is executing.

22

(define swap-control
 (lambda (k-ref val)
 (call/cc
 (lambda (k)
 ((ref-swap! k-ref k)
 val)))))

(define swap-for-ever
 (lambda (gen)
 (swap-control gen #f)
 (swap-for-ever gen)))

(define generator
 (lambda (f)
 (ref
 (lambda (gen)
 (f gen)
 (swap-for-ever gen)))))

(define generator-yield
 swap-control)

(define generator-next
 (lambda (gen)
 (swap-control gen gen)))

Implementing
continuations

Implementing call/cc

To implement call/cc, it must be possible to save the current
continuation at some point, and restore it later. This can be
achieved using two different techniques:

1. a low-level technique, which consists in saving and
restoring the continuations that are maintained at run time
during function calls and returns, and

2. a more high-level technique, which consists in
transforming the source program to ensure that the current
continuation is always explicitly represented as a function,
and therefore easy to manipulate.

We will explore both techniques in turn.

24

Technique #1
Machine continuations

Machine continuations

As explained earlier, all languages have continuations, as they
are used to implement function calls:

• before a function call, the current continuation is saved,
• when a function returns, the most recently saved

continuation is resumed.
However, these continuations – that we will call machine
continuations – are usually not first-class values that can be
manipulated by the programmer. The aim of call/cc is
precisely to turn those continuations into first-class values!

26

call/cc

Assuming that our language is equipped with two primitives to
save and restore machine continuations, call/cc is easy to
implement:
(define call/cc
 (lambda (f)
 (let ((cc (get-machine-continuation)))
 (f (lambda (r)
 (set-machine-continuation! cc)
 r)))))
It remains to be seen how those two primitives can be
implemented.

27

Continuation representation

Where are machine continuations stored? In other words,
where is the information necessary to return from a function
call – return address, register contents – stored?
The answer depends on the machine being used, and on
calling conventions.
In the simplest case, all that information is stored on the stack
before a function call. Therefore, the frame pointer represents
the continuation of a function!
In more complex cases, the information is stored both in the
stack and in callee-saved registers. Some more work is
necessary to save and restore continuations, but the basic idea
is the same.

28

The stack

In a language without first-class continuations, the following
two properties are true:

• continuations are saved and resumed in LIFO order,
• continuations can only be resumed once, which implies

that they can be freed after having been resumed.
These properties make it possible to use a stack to store
continuations. Unfortunately, they do not hold for languages
with first-class continuations!
Implementations of such languages either abandon the stack
completely and allocate all activation frames on the heap, or
lazily copy those frames from the stack to the heap when
continuations are saved.

29

Technique #2
Continuation-passing

style

Continuations “by hand”

What can we do if we want to use continuations but the
language we use doesn’t offer them?
One idea is to transform the program to explicitly represent
continuations using functions.
A program is said to be in continuation-passing style (CPS) if:

• all functions receive a continuation as an additional
argument, and

• they invoke that continuation with their result instead of
returning that result to the caller – i.e. no function ever
returns.

31

CPS example

To illustrate CPS, we will use the following simplified variant of
our adder program:
(print-int (+ (read-int) (read-int)))
To transform this program to CPS, we need to use functions to
represent the current continuation at all possible points of its
execution: just after reading the first integer, after reading the
second, etc.

32

CPS example

33

C
PSCPS version of

read-int

CPS
version of +

(read-int/cps
 (lambda (n1)
 (read-int/cps
 (lambda (n2)
 (+/cps n1 n2
 (lambda (sum)
 (print-int sum)))))))

(print-int (+ (read-int) (read-int)))

CPS example

33

C
PSCPS version of

read-int

CPS
version of +

(read-int/cps
 (lambda (n1)
 (read-int/cps
 (lambda (n2)
 (+/cps n1 n2
 (lambda (sum)
 (print-int sum)))))))

(print-int (+ (read-int) (read-int)))

CPS example

33

C
PSCPS version of

read-int

CPS
version of +

(read-int/cps
 (lambda (n1)
 (read-int/cps
 (lambda (n2)
 (+/cps n1 n2
 (lambda (sum)
 (print-int sum)))))))

(print-int (+ (read-int) (read-int)))

CPS example

33

C
PSCPS version of

read-int

CPS
version of +

(read-int/cps
 (lambda (n1)
 (read-int/cps
 (lambda (n2)
 (+/cps n1 n2
 (lambda (sum)
 (print-int sum)))))))

(print-int (+ (read-int) (read-int)))

Primordial continuation

34

In the CPS version of our example, we cheated by using the
normal version of print-int. Rigorously, we should have
used the CPS version, print-int/cps. But what
continuation should it get?
More generally, what is the primordial continuation, i.e. the
continuation of a complete program?
A function halting execution is a good choice, which could be
defined as follows given a halt primitive:
(lambda (res) (halt))

Defining call/cc/cps

As long as the program is not in CPS, it is not possible to define
call/cc as a function, it must be a primitive.
However, as soon as the program is in CPS, defining the CPS
version of call/cc – i.e. call/cc/cps – is relatively
simple.
To define it, it is useful to remember that the goal of call/
cc/cps is to reify the current continuation by making it
available as a standard (CPS) function.
That function, when applied to an argument x, should invoke
the continuation that was current at the time when call/cc/
cps was invoked, passing it x, and ignore the current
continuation.

35

Defining call/cc/cps

The definition of call/cc/cps is:
(define call/cc/cps
 (lambda (f k)
 (f (lambda (res ignored-k) (k res))
 k)))
Notice how the reified continuation ignores the current
continuation (ignored-k) and invokes the captured one (k)
instead.

36

reified
continuation

CPS conversion for
core minischeme

CPS conversion

As we have seen, we can offer continuations by first
transforming the program to CPS, and then providing an
implementation of call/cc/cps.
Doing this transformation by hand is tiresome and error-prone,
the compiler should do it for us!
This is the idea of CPS conversion, which will be presented
here as a function ⟦·⟧ mapping (a limited version of) core
minischeme terms to equivalent terms in CPS.

38

Limited core minischeme

The translation to CPS will be presented on a version of core
minischeme with the following limitations:

• all functions take a single argument,
• all primitives take two arguments,
• top-level statements and definitions have been translated

away, i.e. the program consists in a single expression.
Removing these limitations is easy and left as an exercise.

39

Top-level expressions
The whole program can be transformed into a single
expression by translating global definitions to assignments to
elements of a vector of global values. Example:

40

(define add
 (lambda (x y)
 (+ x y)))

(define succ
 (lambda (x)
 (add x 1)))

(print-char
 (succ #\a))

(let ((glb (vector 0 0)))
 (vector-set!
 glb 0
 (lambda (x y)
 (+ x y)))
 (vector-set!
 glb 1
 (lambda (x)
 ((vector-ref glb 0) x 1)))
 (print-char
 ((vector-ref glb 1) #\a)))

Top-level expressions
The whole program can be transformed into a single
expression by translating global definitions to assignments to
elements of a vector of global values. Example:

40

(define add
 (lambda (x y)
 (+ x y)))

(define succ
 (lambda (x)
 (add x 1)))

(print-char
 (succ #\a))

(let ((glb (vector 0 0)))
 (vector-set!
 glb 0
 (lambda (x y)
 (+ x y)))
 (vector-set!
 glb 1
 (lambda (x)
 ((vector-ref glb 0) x 1)))
 (print-char
 ((vector-ref glb 1) #\a)))

Top-level expressions
The whole program can be transformed into a single
expression by translating global definitions to assignments to
elements of a vector of global values. Example:

40

(define add
 (lambda (x y)
 (+ x y)))

(define succ
 (lambda (x)
 (add x 1)))

(print-char
 (succ #\a))

(let ((glb (vector 0 0)))
 (vector-set!
 glb 0
 (lambda (x y)
 (+ x y)))
 (vector-set!
 glb 1
 (lambda (x)
 ((vector-ref glb 0) x 1)))
 (print-char
 ((vector-ref glb 1) #\a)))

Conversion outline

The basic idea of CPS conversion is to translate terms to
functions that expect a continuation and invoke that
continuation with the value of the term.
Therefore, all terms are translated to an expression with the
following structure:
 (λ (k) some expression using k)

41

shortcut for the
lambda keyword

Conversion to CPS
⟦x⟧ when x is a number or identifier =
 (λ (k) (k x))

⟦(λ (x) b)⟧ =
 (λ (k) (k (λ (x k2) (⟦b⟧ k2))))

⟦(f x)⟧ when f is not a primitive =
 (λ (k) (⟦f⟧ (λ (fv) (⟦x⟧ (λ (xv) (fv xv k))))))

⟦(p x y)⟧ when p is a primitive =
 (λ (k)
 (⟦x⟧ (λ (xv) (⟦y⟧ (λ (yv) (k (p xv yv)))))))

⟦(let ((n e)) b)⟧ =
 (λ (k) (⟦e⟧ (λ (n) (⟦b⟧ k))))

42

Conversion to CPS

⟦(if c t e)⟧ =
 (λ (k) (⟦c⟧ (λ (cv) (if cv (⟦t⟧ k) (⟦e⟧ k)))))

⟦(and e1 e2)⟧ =
 (λ (k) (⟦e1⟧ (λ (e1v) (if e1v (⟦e2⟧ k) (k e1v)))))
⟦(or e1 e2)⟧ =
 (λ (k) (⟦e1⟧ (λ (e1v) (if e1v (k e1v) (⟦e2⟧ k)))))
⟦(begin e)⟧ = ⟦e⟧

⟦(begin e1 e2 …)⟧ =
 (λ (k) (⟦e1⟧ (λ (e1v) (⟦(begin e2 …)⟧ k))))

43

Example translation

44

(print-int (+ (read-int) (read-int)))

⟦·⟧

(lambda (k1)
 ((lambda (k2) (k2 print-int/cps))
 (lambda (fv1)
 ((lambda (k3)
 ((lambda (k4)
 ((lambda (k5)
 (k5 read-int/cps))
 (lambda (fv2) (fv2 k4))))
 (lambda (xv1)
 ((lambda (k6)
 ((lambda (k7) (k7 read-int/cps))
 (lambda (fv3) (fv3 k6))))
 (lambda (yv) (k3 (+ xv1 yv)))))))
 (lambda (xv2) (fv1 xv2 k1))))))

much more
complicated, but

equivalent to what
we would obtain

by hand

Administrative redexes

45

As the previous example illustrates, the simple translation to
CPS produces a lot of administrative redexes, i.e. redexes that
do not correspond to redexes in the original term.
One of them is highlighted below:

(lambda (k1)
 ((lambda (k2) (k2 print-int/cps))
 (lambda (fv1)
 ((lambda (k3)
 ((lambda (k4)
 ((lambda (k5)
 (k5 read-int/cps))
 (lambda (fv2) (fv2 k4))))
 (lambda (xv1)
 ((lambda (k6)
 ((lambda (k7) (k7 read-int/cps))
 (lambda (fv3) (fv3 k6))))
 (lambda (yv) (k3 (+ xv1 yv)))))))
 (lambda (xv2) (fv1 xv2 k1))))))

reduces (in two steps) to
(read-int/cps k4)

Administrative redexes

By reducing all the administrative redexes in the previous
example, we get the following term:
(lambda (k1)
 (read-int/cps
 (lambda (xv1)
 (read-int/cps
 (lambda (yv)
 (print-int/cps (+ xv1 yv) k1))))))
which is almost what we obtained by hand. The differences are
due to the fact that we treated + as a primitive here, and did
not cheat by using print-int instead of print-int/cps.
Good CPS translations – not presented here – completely avoid
the creation of administrative redexes.

46

Summary

47

Continuations are the “ultimate” control operator. They can be
used to implement many powerful concepts like threads,
exceptions, etc.
Continuations can either be implemented in the target
machine, by manipulating the call stack, or by a transformation
of the program to continuation-passing style (CPS), done by the
compiler.

