
Interpreters and
virtual machines

Michel Schinz
Advanced Compiler Construction – 2009-02-27



Interpreters



Interpreters

An interpreter is a program that executes another program, 
represented as some kind of data-structure. 
Common program representations include:

• raw text (source code),
• trees (AST of the program),
• linear sequences of instructions.

3



Why interpreters?

Interpreters enable the execution of a program without 
requiring its compilation to native code. 
They simplify the implementation of programming languages 
and – on modern hardware – are efficient enough for many 
tasks.

4



Text-based interpreters

Text-based interpreters directly interpret the textual source of 
the program.
They are very seldom used, except for trivial languages where 
every expression is evaluated at most once – i.e. languages 
without loops or functions.
Plausible example: a calculator program, which evaluates 
arithmetic expressions while parsing them.

5



Tree-based interpreters

Tree-based interpreters walk over the abstract syntax tree of 
the program to interpret it.
Their advantage compared to string-based interpreters is that 
parsing – and name/type analysis, if applicable – is done only 
once.
Plausible example: a graphing program, which has to 
repeatedly evaluate a function supplied by the user to plot it. 
The minischeme interpreter is also tree-based.

6



Virtual machines



Virtual machines

Virtual machines behave in a similar fashion as real machines 
(i.e. CPUs), but are implemented in software. They accept as 
input a program composed of a sequence of instructions.
Virtual machines often provide more than the simple 
interpretation of programs: they also abstract the underlying 
system by managing memory, threads, and sometimes I/O.
Perhaps surprisingly, virtual machines are a very old concept, 
dating back to ~1950.
They have been – and still are – used in the implementation of 
many important languages, like SmallTalk, Lisp, Forth, Pascal, 
and more recently Java and C#.

8



Why virtual machines?

Since the compiler has to generate code for some machine, 
why prefer a virtual over a real one?

• for portability: compiled VM code can be run on many 
actual machines,

• for simplicity: a VM is usually more high-level than a real 
machine, which simplifies the task of the compiler,

• for simplicity (2): a VM is easier to monitor and profile, 
which eases debugging.

9



Virtual machines drawbacks

The only drawback of virtual machines compared to real 
machines is that the former are slower than the latter.
This is due to the overhead associated with interpretation: 
fetching and decoding instructions, executing them, etc.
Moreover, the high number of indirect jumps in interpreters 
causes pipeline stalls in modern processors.

10



Kinds of virtual machines

There are two kinds of virtual machines:
• stack-based VMs, which use a stack to store intermediate 

results, variables, etc.
• register-based VMs, which use a limited set of registers for 

that purpose, like a real CPU.
There is some controversy as to which kind is better, but most 
VMs today are stack-based.
For a compiler writer, it is usually easier to target a stack-based 
VM than a register-based VM, as the complex task of register 
allocation can be avoided.

11



Virtual machines input

Virtual machines take as input a program expressed as a 
sequence of instructions.
Each instruction is identified by its opcode (operation code), a 
simple number. Often, opcodes occupy one byte, hence the 
name byte code.
Some instructions have additional arguments, which appear 
after the opcode in the instruction stream.

12



VM implementation

Virtual machines are implemented in much the same way as a 
real processor:

• the next instruction to execute is fetched from memory 
and decoded,

• the operands are fetched, the result computed, and the 
state updated,

• the process is repeated.

13



VM implementation

Many VMs today are written in C or C++, because these 
languages are at the right abstraction level for the task, fast and 
relatively portable.
As we will see later, the Gnu C compiler (GCC) has an 
extension that makes it possible to use labels as normal values. 
This extension can be used to write very efficient VMs, and for 
that reason, several of them are written specifically for GCC.

14



Implementing a VM in C
typedef enum {
  add, /* ... */
} instruction_t;

void interpret() {
  static instruction_t program[] = { add /* ... */ };
  instruction_t* pc = program;
  int* sp = ...; /* stack pointer */
  for (;;) {
    switch (*pc++) {
    case add:
      sp[1] += sp[0];
      sp++;
      break;
      /* ... other instructions */
    }
  }
}

15



Optimizing VMs

The basic, switch-based implementation of a virtual machine 
just presented can be made faster using several techniques:

• threaded code,
• top of stack caching,
• super-instructions,
• JIT compilation.

16



Threaded code



Threaded code

In a switch-based interpreter, each instruction requires two 
jumps:

• one indirect jump to the branch handling the current 
instruction,

• one direct jump from there to the main loop.
It would be better to avoid the second one, by jumping directly 
to the code handling the next instruction. This is called 
threaded code.

18



Switch vs. threaded code

19

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul



Switch vs. threaded code

19

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul



Switch vs. threaded code

19

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul



Switch vs. threaded code

19

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul



Switch vs. threaded code

19

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul



Switch vs. threaded code

19

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul



Switch vs. threaded code

19

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul



Switch vs. threaded code

19

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul



Switch vs. threaded code

19

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul



Switch vs. threaded code

19

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul



Implementing threaded code

20

To implement threaded code, there are two main techniques:
• with indirect threading, instructions index an array 

containing pointers to the code handling them,
• with direct threading, instructions are pointers to the code 

handling them.
Direct threading is the most efficient of the two, and the most 
often used in practice. For these reasons, we will not look at 
indirect threading.



Threaded code in C

To implement threaded code, it must be possible to manipulate 
code pointers. How can this be achieved in C?
In ANSI C, the only way to do this is to use function pointers.
But GCC allows the manipulation of labels as values, which is 
much more efficient!

21



Direct threading in ANSI C

Implementing direct threading in ANSI C is easy, but 
unfortunately very inefficient!
The idea is to define one function per VM instruction. The 
program can then simply be represented as an array of function 
pointers. Some code is inserted at the end of every function, to 
call the function handling the next VM instruction.

22



Direct threading in ANSI C
typedef void (*instruction_t)();
static instruction_t* pc;
static int* sp = ...;

static void add() {
  sp[1] += sp[0];
  ++sp;
  (*++pc)(); /* handle next instruction */
}

/* ... other instructions */

static instruction_t program[] = { add, /* ... */ };

void interpret() {
  sp = ...;
  pc = program;
  (*pc)(); /* handle first instruction */
}

23

If the compiler allows it 
(e.g. GCC), pc and sp should 

be in registers



Direct threading in ANSI C
This implementation of direct threading in ANSI C has a major 
problem: it leads to stack overflow very quickly, unless the 
compiler implements an optimization called tail call 
elimination (TCE).
Briefly, the idea of tail call elimination is to replace a function 
call that appears as the last statement of a function by a simple 
jump to the called function.
In our interpreter, the function call appearing at the end of add 
– and all other functions implementing VM instructions – can 
be optimized that way.
Unfortunately, few C compilers implement tail call elimination 
in all cases. However, GCC 4.01 is able to avoid stack 
overflows for the interpreter just presented.

24



Trampolines

It is possible to avoid stack overflows in a direct threaded 
interpreter written in ANSI C, even if the compiler does not 
perform tail call elimination.
The idea is that functions implementing VM instructions simply 
return to the main function, which takes care of calling the 
function handling the next VM instruction.
While this technique – known as a trampoline – avoids stack 
overflows, it leads to interpreters that are extremely slow. Its 
interest is mostly academic.

25



Direct threading in ANSI C
typedef void (*instruction_t)();
static int* sp = ...;
static instruction_t* pc;

static void add() {
  sp[1] += sp[0];
  ++sp;
  ++pc;
}

/* ... other instructions */

static instruction_t program[] = { add, /* ... */ };

void interpret() {
  sp = ...;
  pc = program;
  for (;;)
    (*pc)();
}

26

trampoline



Direct threading with GCC

The Gnu C compiler (GCC) offers an extension that is very 
useful to implement direct threading: labels can be treated as 
values, and a goto can jump to a computed label.
With this extension, the program can be represented as an 
array of labels, and jumping to the next instruction is achieved 
by a goto to the label currently referred to by the program 
counter.

27



Direct threading with GCC

void interpret() {
  void* program[] = { &&l_add, /* ... */ };

  int* sp = ...;
  void** pc = program;
  goto **pc; /* jump to first instruction */

 l_add:
   sp[1] += sp[0];
   ++sp;
   goto **(++pc); /* jump to next instruction */

 /* ... other instructions */
}

28

label-as-value

computed 
goto



Threading benchmark
The benchmark below compares several versions of a small 
interpreter measured while interpreting 500’000’000 iterations 
of a simple loop. The code was compiled using GCC v4.01 
with full optimizations, and run on an Intel Core 2 Duo.
The normalized times are presented below, and show that only 
interpreters taking advantage of GCC extensions performs 
better than a switch-based interpreter.

29

switch-based

trampoline

no trampoline (with TCE)

no trampoline, PC/SP in registers

GCC's labels-as-values

0 0.5 1 1.5 2 2.5 3

0.62

0.85

1.37

2.02

1.00



Top-of-stack caching



Top-of-stack caching
In a stack-based VM, the stack is typically represented as an 
array in memory. Since almost all instructions access the stack, 
it can be interesting to store some of its topmost elements in 
registers.
However, keeping a fixed number of stack elements in registers 
is usually a bad idea, as the following example illustrates:

31

t

Stack array Top-of-stack register

… y x



Top-of-stack caching
In a stack-based VM, the stack is typically represented as an 
array in memory. Since almost all instructions access the stack, 
it can be interesting to store some of its topmost elements in 
registers.
However, keeping a fixed number of stack elements in registers 
is usually a bad idea, as the following example illustrates:

31

t

Stack array Top-of-stack register

pop
… y x



Top-of-stack caching
In a stack-based VM, the stack is typically represented as an 
array in memory. Since almost all instructions access the stack, 
it can be interesting to store some of its topmost elements in 
registers.
However, keeping a fixed number of stack elements in registers 
is usually a bad idea, as the following example illustrates:

31

t

Stack array Top-of-stack register

x
pop

… y x

… y



Top-of-stack caching
In a stack-based VM, the stack is typically represented as an 
array in memory. Since almost all instructions access the stack, 
it can be interesting to store some of its topmost elements in 
registers.
However, keeping a fixed number of stack elements in registers 
is usually a bad idea, as the following example illustrates:

31

t

Stack array Top-of-stack register

x
pop

push u

… y x

… y



Top-of-stack caching
In a stack-based VM, the stack is typically represented as an 
array in memory. Since almost all instructions access the stack, 
it can be interesting to store some of its topmost elements in 
registers.
However, keeping a fixed number of stack elements in registers 
is usually a bad idea, as the following example illustrates:

31

t

Stack array Top-of-stack register

x

u

pop

push u

… y x

… y x

… y



Top-of-stack caching
In a stack-based VM, the stack is typically represented as an 
array in memory. Since almost all instructions access the stack, 
it can be interesting to store some of its topmost elements in 
registers.
However, keeping a fixed number of stack elements in registers 
is usually a bad idea, as the following example illustrates:

31

t

Stack array Top-of-stack register

x

u

pop

push u

… y x

… y x

… y
x moves around 
unnecessarily



Top-of-stack caching
Since caching a fixed number of stack elements in registers 
seems like a bad idea, it is natural to try to cache a variable 
number of them.
For example, here is what happens when caching at most one 
stack element in a register:

32

t

Stack array Top-of-stack register

… y x



Top-of-stack caching
Since caching a fixed number of stack elements in registers 
seems like a bad idea, it is natural to try to cache a variable 
number of them.
For example, here is what happens when caching at most one 
stack element in a register:

32

t

Stack array Top-of-stack register

pop
… y x



Top-of-stack caching
Since caching a fixed number of stack elements in registers 
seems like a bad idea, it is natural to try to cache a variable 
number of them.
For example, here is what happens when caching at most one 
stack element in a register:

32

t

Stack array Top-of-stack register

pop
… y x

… y x



Top-of-stack caching
Since caching a fixed number of stack elements in registers 
seems like a bad idea, it is natural to try to cache a variable 
number of them.
For example, here is what happens when caching at most one 
stack element in a register:

32

t

Stack array Top-of-stack register

pop

push u

… y x

… y x



Top-of-stack caching
Since caching a fixed number of stack elements in registers 
seems like a bad idea, it is natural to try to cache a variable 
number of them.
For example, here is what happens when caching at most one 
stack element in a register:

32

t

Stack array Top-of-stack register

u

pop

push u

… y x

… y x

… y x



Top-of-stack caching
Since caching a fixed number of stack elements in registers 
seems like a bad idea, it is natural to try to cache a variable 
number of them.
For example, here is what happens when caching at most one 
stack element in a register:

32

t

Stack array Top-of-stack register

u

pop

push u

… y x

… y x

… y x
no more 

unnecessary 
movement!



Top-of-stack caching
Caching a variable number of stack elements in registers 
complicates the implementation of instructions.
There must be one implementation of each VM instruction per 
cache state – defined as the number of stack elements 
currently cached in registers.
For example, when caching at most one stack element, the 
add instruction needs the following two implementations:

33

add_0:
  tos = sp[0]+sp[1];
  sp += 2;
  // go to state 1

add_1:
  tos += sp[0];
  sp += 1;
  // stay in state 1

State 0: no elements in reg. State 1: top-of-stack in reg.



Benchmark
The benchmark below compares two versions of a small 
interpreter measured while interpreting a program summing 
the first 200’000’000 integers. Both interpreters were compiled 
with GCC 4.0.1 with maximum optimizations, and run on an 
Intel Core 2 Duo.
The normalized times are presented below, and show that top-
of-stack caching brought a 42% improvement to the 
interpreter.

34

without TOS caching

with TOS caching

0 0.25 0.5 0.75 1

0.58

1



Super-instructions



Static super-instructions

Since instruction dispatch is expensive in a VM, one way to 
reduce its cost is simply to dispatch less!
This can be done by grouping several instructions that often 
appear in sequence into a super-instruction.
For example, if the mul instruction is often followed by the 
add instruction, the two can be combined in a single madd 
(multiply and add) super-instruction.
Profiling is typically used to determine which sequences 
should be transformed into super-instructions, and the 
instruction set of the VM is then modified accordingly.

36



Dynamic super-instructions

It is also possible to generate super-instructions at run time, to 
adapt them to the program being run. This is the idea behind 
dynamic super-instructions.
This technique can be pushed to its limits, by generating one 
super-instruction for every basic block of the program! This 
effectively transform all basic blocks into single 
(super-)instructions.

37



Just-in-time compilation



Just-in-time compilation

Virtual machines can be sped up through the use of just-in-
time (JIT) – or dynamic – compilation.
The basic idea is relatively simple: instead of interpreting a 
piece of code, first compile it to native code – at run time – 
and then execute the compiled code.
In practice, care must be taken to ensure that the cost of 
compilation followed by execution of compiled code is not 
greater than the cost of interpretation!

39



JIT: how to compile?

JIT compilers have one constraint that “off-line” compilers do 
not have: they must be fast – fast enough to make sure the time 
lost compiling the code is regained during its execution.
For that reason, JIT compilers usually do not use costly 
optimization techniques, at least not for the whole program.

40



JIT: what to compile?

Some code is executed only once over the whole run of a 
program. It is usually faster to interpret that code than go 
through JIT compilation.
Therefore, it is better to start by interpreting all code, and 
monitor execution to see which parts of the code are executed 
often – the so-called hot spots.
Once the hot spots are identified, they can compiled to native 
code, while the rest of the code continues to be interpreted.

41



Real-world example:
the Java Virtual Machine



The Java Virtual Machine

With Microsoft’s Common Language Runtime (CLR), the Java 
Virtual Machine (JVM) is certainly the best known and most 
used virtual machine.
Its main characteristics are:

• it is stack based,
• it includes most of the high-level concepts of Java 1.0: 

classes, interfaces, methods, exceptions, monitors, etc.
• it was designed to enable verification of the code before 

execution.
Notice that the JVM has remained sensibly the same since Java 
1.0. All recent improvements to the Java language were 
implemented by changing the compiler.

43



The JVM model

The JVM is composed of:
• a stack, used to store intermediate values,
• a set of local variables private to the method being 

executed, which include the method’s arguments,
• a heap, from which objects are allocated – deallocation is 

performed automatically by the garbage collector.
It accepts class files as input, each of which contains the 
definition of a single class or interface. These class files are 
loaded on-demand as execution proceeds, starting with the 
class file containing the main method of the program.

44



The JVM instruction set

The JVM has 201 instructions to perform various tasks like 
loading values on the stack, computing arithmetic expressions, 
jumping to different locations, etc.
One interesting feature of the JVM is that all instructions are 
typed. This feature is used to support verification.
Example instructions:

• iadd – add the two integers on top of stack, and push 
back result,

• invokevirtual – invoke a method, using the values on 
top of stack as arguments, and push back result,

• etc.

45



The factorial on the JVM

46

static int fact(int x) {
  return x == 0 ? 1 : x * fact(x - 1);
}

byte code
 0: iload_0
 1: ifne 8
 4: iconst_1
 5: goto 16
 8: iload_0
 9: iload_0
10: iconst_1
11: isub
12: invokestatic fact
15: imul
16: ireturn



The factorial on the JVM

46

static int fact(int x) {
  return x == 0 ? 1 : x * fact(x - 1);
}

byte code
 0: iload_0
 1: ifne 8
 4: iconst_1
 5: goto 16
 8: iload_0
 9: iload_0
10: iconst_1
11: isub
12: invokestatic fact
15: imul
16: ireturn

stack contents
[int]
[]
[int]
[int]
[int]
[int,int]
[int,int,int]
[int,int]
[int,int]
[int]
[]



Byte code verification

47

A novel feature of the JVM is that it verifies programs before 
executing them, to make sure that they satisfy some safety 
requirements.
To enable this, all instructions are typed and several restrictions 
are put on programs, for example:

• it must be possible to compute statically the type of all 
data on the stack at any point in a method,

• jumps must target statically known locations – indirect 
jumps are forbidden.



Sun’s HotSpot JVM

HotSpot is Sun’s implementation of the JVM. It is a quite 
sophisticated VM, featuring:

• an interpreter including all optimizations we have seen,
• the automatic detection of hot spots in the code, which are 

then JIT compiled,
• two separate JIT compilers:

• a client compiler, fast but non-optimizing,
• a server compiler, slower but optimizing (based on SSA).

48



Summary

Interpreters enable the execution of a program without having 
to compile it to native code, thereby simplifying the 
implementation of programming languages.
Virtual machines are the most common kind of interpreters, 
and are a good compromise between ease of implementation 
and speed.
Several techniques exist to make VMs fast: threaded code, top-
of-stack caching, super-instructions, JIT compilation, etc.

49


