
The minischeme project
Michel Schinz

Advanced Compiler Construction – 2009-02-20

Project overview

What you get:
1. an interpreter and a compiler for minischeme, written in

Scala,
2. a virtual machine, written in C.

What you have to do:
1. two non-graded “warm-up” exercises,
2. add a garbage collector to the virtual machine,
3. add support for closures to the compiler,
4. optimize tail calls in the compiler,
5. an advanced project of your choice.

2

The minischeme language

The minischeme language

Minischeme is a dialect of Scheme, itself a dialect of Lisp. Its
main characteristics are:

• it is “dynamically typed”,
• it has few side effects (exceptions: arrays, input/output),
• it is functional: functions are first-class values and can be

nested,
• it is very simple, with seven keywords (define, let,
begin, lambda, if, and and or)

• it has three kinds of values: integers, vectors and functions,
• memory is freed automatically.

4

Syntax
(define name expr)

Global value definition: name is bound to the value of expr.
Only valid at the top level.
Global values are visible in the whole program, but
initialized in the order in which they are written.

(let ((name1 expr1) …) body1 … bodyn)
Local value(s) definition: name1 is bound to the value of
expr1, name2 to the value of expr2, … in body1…n. The value
of the whole expression is the value of bodyn. (Note: name
namej is also visible in exprk for all k > j)

(begin expr1 expr2 … exprn)
Sequential execution: expr1…exprn are evaluated in order.
The value of the whole expression is the value of exprn.

5

Syntax
(lambda (name1 … namen) body1 … bodym)

Anonymous function, with parameters name1 ... namen and
body body1 … bodym.

(if exprc exprt expre)
Conditional: evaluates to the value of expre iff exprc
evaluates to 0, otherwise evaluates to the value of exprt.

(and expr1 expr2)
Conjunction: evaluates to the value of expr1 if expr1
evaluates to 0, otherwise evaluates to the value of expr2.

(or expr1 expr2)
Disjunction: evaluates to the value of expr1 if expr1 does not
evaluate to 0, otherwise evaluates to the value of expr2.

6

Syntax
(exprf expr1 … exprn)

Function application: apply the function resulting from the
evaluation of exprf with the values of expr1 … exprn as
arguments.
Arguments are evaluated from left to right.

1 2 3 … n
Integer constants.

#\c
Character constant (equivalent to an integer constant, see
later).

"string"
String constant (equivalent to a vector, see later).

7

Code example

8

Function to compute xy on integers (y must be positive):
(define pow
 (lambda (x y)
 (if (= 0 y)
 1
 (if (= 0 (% y 2))
 (let ((z (pow x (/ y 2))))
 (* z z))
 (* x (pow x (- y 1)))))))

Grasping the syntax
Minischeme “has no syntax”, in that its concrete syntax is very
close to its abstract syntax.
For example, the minischeme expression on the left is an
almost direct textual transcription of a pre-order traversal of its
AST on the right, in which nodes are parenthesized, while
leaves are unadorned.

9

(lambda (x)
 (print-int
 (+ 1 (* x x))))

Lambda

x Apply

print-int +

1 *

x x

Syntactic equivalences
The following syntactic equivalences hold. Some of them are
used in the compiler to simplify the input program.

10

(let ((n1 e1)
 (n2 e2) …)
 body)

(let ((n1 e1))
 (let ((n2 e2)) …
 body)

(let (…)
 b1 … bn)

(let (…)
 (begin b1 … bn))

(lambda (…)
 b1 … bn)

(lambda (…)
 (begin b1 … bn))

(let ((n1 e1))
 body)

((lambda (n1) body)
 e1)

≣

≣

≣

≣

Primitives

Minischeme is equipped with the following primitives, most of
which correspond directly to one VM instruction:

• Arithmetic primitives: +, -, *, /, %
• Logical primitives: <, <=, =, >, >=, not
• Vector primitives: vector, vector-ref, vector-set!
• Input/output primitives: read-char, print-char

Primitives are invoked using the syntax of function application,
for example: (* 6 (+ 4 3))
However, primitives are not functions.

11

Vectors

Minischeme provides three primitives to work with vectors
(a.k.a. arrays):

• (vector e1 … en) allocates a vector of n elements,
initialized with the values of e1 … en.

• (vector-ref v n) returns the nth element of vector v.
Indexing is 0-based.

• (vector-set! v n e) sets the nth element of vector v
to the value of e.

12

Characters and strings

Minischeme does not offer character and string values, but it
offers syntactic sugar for character and string constants.
A character constant is written #\c and is translated to the
ASCII code of c. For example, #\H is translated to 72.
A string constant is written "string" and is translated to a
vector. The first component of that vector contains the length of
the string, while the following ones contain its characters
encoded as above. For example, "HELLO" is translated to
(vector 5 72 69 76 76 79).

13

length H …E

Representing pairs

Pairs can easily be represented using vectors:
;; construct a pair
(define cons
 (lambda (f s)
 (vector f s)))

;; get first component
(define car (lambda (p) (vector-ref p 0)))

;; get second component
(define cdr (lambda (p) (vector-ref p 1)))
Note: the names cons, car and cdr are historical.

14

Representing lists

Lists can easily be represented using pairs: the first component
of the pair contains the head of the list, while the second
component contains its tail – another list. The empty list is
represented by a special value called nil.
This representation of lists by pairs is used in most functional
languages: Scheme, Haskell, OCaml, Scala, etc.
For example, the list 1,2,3,4 can be constructed by the
following code:
(cons 1 (cons 2 (cons 3 (cons 4 nil))))
and its second element can be accessed by the following code,
where lst represents the list:
(car (cdr lst))

15

The minivm virtual
machine

minivm
Minivm is a virtual machine designed for this project. Its main
characteristics are:

• it is register-based: there are 32 general-purpose registers
R0…R31, and a program counter PC,

• it is very simple, with only 18 instructions,
• it accepts textual assembly code as input.

The design goals were:
• to have a simple, easy to implement machine,
• to have it resemble a real processor, to make the compiler

realistic.
However, this machine is definitely not an ideal target for a
Scheme compiler!

17

Word size

The size of the various minivm storage elements (registers and
memory blocks) is defined in terms of an abstract word size,
expressed in bytes.
The word size of a given minivm instance is the size of a
pointer in the architecture for which this instance was
compiled. For example, it is 4 for a 32-bits architecture, and 8
for a 64-bits architecture.
Registers can contain exactly one word each, while memory
blocks can contain an arbitrary number of words, depending
on their capacity.

18

Memory model

19

The memory of minivm is split in two parts:
1. the bottom one contains the code,
2. the top one contains the heap.

A block of heap memory can be allocated using the ALOC
instruction. A block is an array of words placed consecutively
in memory. The capacity of a block is the number of words it
can contain.
There is no instruction to free a block, which means that a
garbage collector is needed to run realistic programs.

Instruction set

Minivm instruction set can be categorized as follows:
• Arithmetic: ADD, SUB, MUL, DIV, MOD
• Control: JLT, JLE, JEQ, JNE, JGE, JGT, HALT
• Memory: ALOC, LOAD, STOR, LINT
• Input/output: RCHR, PCHR

20

Arithmetic instructions

21

ADD Ra Rb Rc Ra ← Rb + Rc

SUB Ra Rb Rc Ra ← Rb - Rc

MUL Ra Rb Rc Ra ← Rb * Rc

DIV Ra Rb Rc Ra ← Rb / Rc

MOD Ra Rb Rc Ra ← Rb mod Rc

Control instructions

22

JLT Ra Rb Rc if Rb < Rc then PC ← Ra

JLE Ra Rb Rc if Rb ≤ Rc then PC ← Ra

JEQ Ra Rb Rc if Rb = Rc then PC ← Ra

JNE Ra Rb Rc if Rb ≠ Rc then PC ← Ra

JGE Ra Rb Rc if Rb ≥ Rc then PC ← Ra

JGT Ra Rb Rc if Rb > Rc then PC ← Ra

HALT halt virtual machine

Memory instructions

23

LINT R C R ← C

LOAD Ra Rb Rc Ra ← Mem[Rb + w * Rc]

STOR Ra Rb Rc Mem[Rb + w * Rc] ← Ra

ALOC Ra Rb Ra ← new block of Rb words

w is the word size in bytes, memory is byte-addressable

integer or label

I/O instructions

24

RCHR R R ← read character from input

PCHR R print char(R) on output

Implementation

25

You will be given a C implementation of minivm, with the
following limitations:

• heap memory is never freed, and the VM exits when all
available memory has been used,

• not as efficient as it could be.
Part of your job will be to improve it!

Implementation overview

The implementation is composed of the following three main
modules (C files):

• loader: parses textual assembly files and calls functions in
the engine module to emit the corresponding instructions,

• engine: produces the representation of the program in
memory, based on instructions from the loader, and
executes it later,

• memory: allocates memory used to store the program and
the data used by it.

26

Code example

27

fact: LINT R2 else
 JEQ R2 R1 R0
 LINT R2 3
 ALOC R2 R2
 STOR R30 R2 R0
 LINT R3 1
 STOR R29 R2 R3
 LINT R3 2
 STOR R1 R2 R3
 ADD R30 R2 R0
 LINT R2 1
 SUB R1 R1 R2
 LINT R29 ret
 LINT R2 fact
 JEQ R2 R0 R0

ret: LINT R3 2
 LOAD R2 R30 R3
 MUL R1 R1 R2
 LINT R3 1
 LOAD R2 R30 R3
 LOAD R30 R30 R0
 JEQ R2 R0 R0
else: LINT R1 1
 JEQ R29 R0 R0

Note: R0 contains 0.

Code example

27

fact: LINT R2 else
 JEQ R2 R1 R0
 LINT R2 3
 ALOC R2 R2
 STOR R30 R2 R0
 LINT R3 1
 STOR R29 R2 R3
 LINT R3 2
 STOR R1 R2 R3
 ADD R30 R2 R0
 LINT R2 1
 SUB R1 R1 R2
 LINT R29 ret
 LINT R2 fact
 JEQ R2 R0 R0

ret: LINT R3 2
 LOAD R2 R30 R3
 MUL R1 R1 R2
 LINT R3 1
 LOAD R2 R30 R3
 LOAD R30 R30 R0
 JEQ R2 R0 R0
else: LINT R1 1
 JEQ R29 R0 R0

allocate,
initialize and

link frame

Note: R0 contains 0.

Code example

27

fact: LINT R2 else
 JEQ R2 R1 R0
 LINT R2 3
 ALOC R2 R2
 STOR R30 R2 R0
 LINT R3 1
 STOR R29 R2 R3
 LINT R3 2
 STOR R1 R2 R3
 ADD R30 R2 R0
 LINT R2 1
 SUB R1 R1 R2
 LINT R29 ret
 LINT R2 fact
 JEQ R2 R0 R0

ret: LINT R3 2
 LOAD R2 R30 R3
 MUL R1 R1 R2
 LINT R3 1
 LOAD R2 R30 R3
 LOAD R30 R30 R0
 JEQ R2 R0 R0
else: LINT R1 1
 JEQ R29 R0 R0

allocate,
initialize and

link frame

perform
recursive

call Note: R0 contains 0.

Code example

27

fact: LINT R2 else
 JEQ R2 R1 R0
 LINT R2 3
 ALOC R2 R2
 STOR R30 R2 R0
 LINT R3 1
 STOR R29 R2 R3
 LINT R3 2
 STOR R1 R2 R3
 ADD R30 R2 R0
 LINT R2 1
 SUB R1 R1 R2
 LINT R29 ret
 LINT R2 fact
 JEQ R2 R0 R0

ret: LINT R3 2
 LOAD R2 R30 R3
 MUL R1 R1 R2
 LINT R3 1
 LOAD R2 R30 R3
 LOAD R30 R30 R0
 JEQ R2 R0 R0
else: LINT R1 1
 JEQ R29 R0 R0

allocate,
initialize and

link frame

perform
recursive

call

compute
result

Note: R0 contains 0.

Code example

27

fact: LINT R2 else
 JEQ R2 R1 R0
 LINT R2 3
 ALOC R2 R2
 STOR R30 R2 R0
 LINT R3 1
 STOR R29 R2 R3
 LINT R3 2
 STOR R1 R2 R3
 ADD R30 R2 R0
 LINT R2 1
 SUB R1 R1 R2
 LINT R29 ret
 LINT R2 fact
 JEQ R2 R0 R0

ret: LINT R3 2
 LOAD R2 R30 R3
 MUL R1 R1 R2
 LINT R3 1
 LOAD R2 R30 R3
 LOAD R30 R30 R0
 JEQ R2 R0 R0
else: LINT R1 1
 JEQ R29 R0 R0

allocate,
initialize and

link frame

perform
recursive

call

compute
result

Note: R0 contains 0.

unlink frame
and return

The minischeme
interpreter and compiler

Interpreter and compiler

You will be given a Scala implementation of a minischeme
interpreter and compiler. The interpreter implements the full
language, but the compiler has the following limitations:

• functions cannot refer to local values defined in an
enclosing scope,

• no code is produced to perform dynamic checks, which
means that most type errors or incorrect array indexing
result in a VM crash (!),

• the produced code is not very good.
Your job will be to remove some of these limitations later.

29

Organization

30

Scanner

Parser

Name analyzer

Code generator

tokens

tree

attributed tree

minivm code

Eta expander

Interpreter

text files

attributed tree

Eta-expansion
The eta-expansion phase transforms the code to ensure that
primitives are always applied to as many arguments as they
expect. This guarantee simplifies later phases of the compiler.
This guarantee is obtained by wrapping primitives inside
anonymous functions whenever they are used as values. For
example, the following code:
(map not l)
is transformed to:
(map (lambda (x1) (not x1)) l)
Limitation: the vector primitive accepts a variable number of
arguments, and since minischeme does not provide functions
with variable number of arguments, it cannot be used as a
value.

31

Register usage

32

The compiler assigns specific roles to the following registers:
• R0 – holds the constant 0,
• R29 – holds the return address (LK),
• R30 – holds the stack frame (FP),
• R31 – holds the vector of global variables (GP).

Notice that these conventions are in no way enforced by the
VM itself!

Calling conventions

Function arguments are passed in registers R1…R29.
Functions with more than 28 arguments are currently not
supported. They could easily be supported by packing some
arguments in a vector, though.
The return value is put in R1.
Register R30 (FP) is callee-saved, R1…R29 are caller-saved.

33

Stack

Stack frames are allocated from the heap, and a pointer to the
stack frame of the currently-executing function is stored in R30
(a.k.a. the frame pointer FP).
The stack frame of a function f contains:

• the frame pointer of the function that called f,
• the return address, saved from R29 (LK),
• the arguments passed to f, which are saved on the stack at

function entry,
• all the local variables of f.

34

Stack

Usually, the stack is a
contiguous area of memory.
In minivm, as we have seen,
this is not the case.
The stack in minivm is a
singly linked list of blocks: the
head of that list is stored in
the FP register, and each
block but the last contains a
pointer to its successor, in the
form of the saved caller's FP.

35

…

FPR0 GP

Heap

caller's FP

caller's FP

