
SSA form

Michel Schinz
Advanced Compiler Construction – 2008-05-23



Static single assignment 
(SSA) form 



Static single assignment

Static single-assignment (or SSA) form is an intermediate 
representation in which each variable has only one 
definition in the program.

That single definition can be executed many times when 
the program is run – if it is inside a loop – hence the 
qualifier static.

SSA form is interesting because it simplifies several 
optimisations and analysis, as we will see.
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Straight-line code
Transforming a piece of straight-line code – i.e. without 
branches – to SSA is trivial: each definition of a given name 
gives rise to a new version of that name, identified by a 
subscript:
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x=12
y=15
x=x+y
y=x+4
z=x+y
y=y+1

x1=12
y1=15
x2=x1+y1
y2=x2+4
z1=x2+y2
y3=y2+1

to SSA



ϕ-functions

Join-points in the CFG – nodes with more than one 
predecessors – are more problematic, as each predecessor 
can bring its own version of a given name.

To reconcile those different versions, a fictional ϕ-function 
is introduced at the join point. That function takes as 
argument all the versions of the variable to reconcile, and 
automatically selects the right one depending on the flow 
of control.
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ϕ-functions example
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x=12
y=15
if x<y

y=x
x=x+1

y=x+1

z=x*y

x1=12
y1=15
if x1<y1

y2=x1
x2=x1+1

y3=x1+1

x3=ϕ(x2,x1)
y4=ϕ(y2,y3)
z=x3*y4

to SSA

Note: 
all ϕ functions 
are evaluated 

simultaneously



(Naïve) building of SSA form
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Naïve technique to build SSA form:

• for each variable x of the CFG, at each join point n, 
insert a ϕ-function of the form x=ϕ(x,…,x) with as many 
parameters as n has predecessors,

• compute reaching definitions, and use that information 
to rename any use of a variable according to the – now 
unique – definition reaching it.



(Naïve) building of SSA form
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CFG
x=1
y=2
z=x+y

y=y-1
x=x+y

y=y+1
x=y

y=x*2
z=z+x

After phase 1 After phase 2



(Naïve) building of SSA form
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CFG
x=1
y=2
z=x+y

y=y-1
x=x+y

y=y+1
x=y

y=x*2
z=z+x

After phase 1
x=1
y=2
z=x+y

y=y-1 
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z=ϕ(z,z)
y=x*2
z=z+x
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(Naïve) building of SSA form
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CFG
x=1
y=2
z=x+y

y=y-1
x=x+y

y=y+1
x=y
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y4=ϕ(y2,y3)
z2=ϕ(z1,z1)
y5=x4*2
z3=z2+x4
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x=1
y=2
z=x+y

y=y-1
x=x+y

y=y+1
x=y

y=x*2
z=z+x

After phase 1
x=1
y=2
z=x+y
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x=x+y

y=y+1
x=y

x=ϕ(x,x)
y=ϕ(y,y)
z=ϕ(z,z)
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After phase 2
x1=1
y1=2
z1=x1+y1

y2=y1-1
x2=x1+y2

y3=y1+1
x3=y3

x4=ϕ(x2,x3)
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dead
redundant



Smarter techniques
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The naïve technique just presented works, in the sense that 
the resulting program is in SSA form and is equivalent to 
the original one.

However, it introduces too many ϕ-functions – some dead, 
some redundant – to be useful in practice. It builds the 
maximal SSA form.

We will examine better techniques later, but to understand 
them we must first introduce the notion of dominance in a 
CFG.



Dominance



Dominance

In a control-flow graph, a node n1 dominates a node n2 if 
all paths from the start node to n2 pass through n1.

By definition, the domination relation is reflexive, that is a 
node n always dominates itself. We then say that node n1 
strictly dominates n2 if n1 dominates n2 and n1 ≠ n2.

The immediate dominator of a node n is the strict 
dominator of n closest to n.
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Dominance example
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CFG

0

1

2 3

4 5

6

7

Dominance

Node Dominators

0 { 0 }

1 { 0, 1 }

2 { 0, 1, 2 }

3 { 0, 1, 3 }

4 { 0, 1, 3, 4 }

5 { 0, 1, 3, 5 }

6 { 0, 1, 3, 6 }

7 { 0, 1, 7 }

(immediate 
dominator in bold)



Dominator tree
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The dominator tree is a tree representing the dominance 
relation.

The nodes of the tree are the nodes of the CFG, and a node 
n1 is a parent of a node n2 if and only if n1 is the immediate 
dominator of n2.



Dominator tree example
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CFG

0

1

2 3

4 5

6

7

Dominator tree

0

1

2 3

4 5

6

7



Computing dominance
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Dominance can be computed using data-flow analysis.

To each node n of the CFG we attach a variable vn giving 
the set of nodes that dominate n. The value of vn is given by 
the following equation:

vn = { n } ∪ (vp1 ∩ vp2 ∩ … ∩ vpk)

where p1, …, pk are the predecessors of n.



Dominance frontier

The dominance frontier of a node n – written
DF(n) – is the set of all nodes m such that n dominates a 
predecessor of m, but does not strictly dominates m itself.

Informally, the dominance frontier of n contains the first 
nodes which are reachable from n but which are not strictly 
dominated by n.
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Dominance frontier example
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Dominance frontierCFG

0

1

2 3

4 5

6

7 7

6

54

32

1

0

dominance 
frontier of 3={7}

nodes 
dominated by 3



Building SSA form



Minimal SSA form

The naïve technique to build SSA form presented earlier 
inserts ϕ-functions for every variable at the beginning of 
every join point.

Using dominance information, it is possible to do better, 
and compute minimal SSA form: for each definition of a 
variable x in a node n, insert a ϕ-function for x in all nodes 
of DF(n).

Notice that the inserted ϕ-functions are definitions, and 
can therefore force the insertion of more ϕ-functions.
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Improving on minimal SSA

Reminder: the naïve technique to build SSA form presented 
at the beginning computes maximal SSA form.

The better technique just presented computes minimal SSA 
form.

Unfortunately, minimal SSA form is not necessarily optimal, 
and can contain dead ϕ-functions. To solve that problem, 
improved techniques have been developed to build semi-
pruned – which is still not optimal – and pruned SSA form.
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Semi-pruned SSA form

Observation: a variable that is only live in a single node 
can never have a live ϕ-function.

Therefore, the minimal technique can be further refined by 
first computing the set of global names – defined as the 
names that are live across more than one node – and 
producing ϕ-functions for these names only.

This is called semi-pruned SSA form.
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Building semi-pruned SSA form

Like the naïve technique to build maximal SSA form, the 
algorithm to build semi-pruned SSA form is composed of 
two phases:

1. ϕ-functions are inserted for global names, according 
to dominance information,

2. variables are renamed.
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Phase 1: inserting ϕ-functions

Before inserting ϕ-functions, the set G of global names 
must be computed. Once this is done, insertion of ϕ-
functions is done as follows:

for each name x in G
  work list = all nodes in which x is defined
  for each node n in work list
    for each node m in DF(n)
      insert a ϕ-function for x in m
      work list = work list ∪ { m }
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Phase 2: renaming variables

Renaming is done by a pre-order traversal of the dominator 
tree, as follows:

for each node n in the dominator tree
  rename definitions and uses of variables in n
  rename ϕ-functions parameters corresponding to n in all
    successors of n in the CFG.
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CFG

Example: phase 1

25

Algorithm (phase 1)
for each name x in {x,y,z}
  work list = all nodes in which x is defined
  for each node n in work list
    for each node m in DF(n)
      insert a ϕ-function for x in m
      work list = work list ∪ { m }

b c

Result

x=1
y=2
z=x+y

y=y-1
x=x+y

y=y+1
x=y

y=x*2
z=z+x

a

d

DF(a) = DF(d) = {}
DF(b) = DF(c) = {d}
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wrk lst ϕ-fun.
[a,b,c]
[b,c] for x in d
[c,d] for x in d
[d]
[]

name x

wrk lst ϕ-fun.
[a,b,c,d]
[b,c,d] for y in d
[c,d] for y in d
[d]
[]

name y

wrk lst ϕ-fun.
[a,d]
[d]
[]

name z

x=1
y=2
z=x+y

y=y-1
x=x+y

y=y+1
x=y

y=x*2
z=z+x

a

d

DF(a) = DF(d) = {}
DF(b) = DF(c) = {d}
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Algorithm (phase 1)
for each name x in {x,y,z}
  work list = all nodes in which x is defined
  for each node n in work list
    for each node m in DF(n)
      insert a ϕ-function for x in m
      work list = work list ∪ { m }

b c

Result

wrk lst ϕ-fun.
[a,b,c]
[b,c] for x in d
[c,d] for x in d
[d]
[]

name x

wrk lst ϕ-fun.
[a,b,c,d]
[b,c,d] for y in d
[c,d] for y in d
[d]
[]

name y

wrk lst ϕ-fun.
[a,d]
[d]
[]

name z

x=1
y=2
z=x+y

y=y-1
x=x+y

y=y+1
x=y

y=x*2
z=z+x

a

d

DF(a) = DF(d) = {}
DF(b) = DF(c) = {d}

x=ϕ(x,x)
y=ϕ(y,y)
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Dominator tree

a

b c d

Algorithm (phase 2)

for each node n in the dominator tree (pre-order)
  rename definitions and uses of variables in n
  rename ϕ-functions parameters corresponding
    to n in all successors of n in the CFG.

b c

x=1
y=2
z=x+y

y=y-1
x=x+y

y=y+1
x=y

x=ϕ(x,x)
y=ϕ(y,y) 
y=x*2
z=z+x

a

d

chosen pre-order: 
a,b,d,c
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26

Dominator tree

a

b c d

Algorithm (phase 2)

for each node n in the dominator tree (pre-order)
  rename definitions and uses of variables in n
  rename ϕ-functions parameters corresponding
    to n in all successors of n in the CFG.

b c

x=1
y=2
z=x+y

x1=1
y1=2
z1=x1+y1

y=y-1
x=x+y

y=y+1
x=y

x=ϕ(x,x)
y=ϕ(y,y) 
y=x*2
z=z+x

a

d

chosen pre-order: 
a,b,d,c
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26

Dominator tree

a

b c d

Algorithm (phase 2)

for each node n in the dominator tree (pre-order)
  rename definitions and uses of variables in n
  rename ϕ-functions parameters corresponding
    to n in all successors of n in the CFG.

b c

x=1
y=2
z=x+y

x1=1
y1=2
z1=x1+y1

y=y-1
x=x+y

y=y+1
x=y

x=ϕ(x,x)
y=ϕ(y,y) 
y=x*2
z=z+x

a

d

chosen pre-order: 
a,b,d,c

y2=y1-1
x2=x1+y2
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Dominator tree

a

b c d

Algorithm (phase 2)

for each node n in the dominator tree (pre-order)
  rename definitions and uses of variables in n
  rename ϕ-functions parameters corresponding
    to n in all successors of n in the CFG.

b c

x=1
y=2
z=x+y

x1=1
y1=2
z1=x1+y1

y=y-1
x=x+y

y=y+1
x=y

x=ϕ(x,x)
y=ϕ(y,y) 
y=x*2
z=z+x

a

d

chosen pre-order: 
a,b,d,c

y2=y1-1
x2=x1+y2

x=ϕ(x2,x)
y=ϕ(y2,y) 
y=x*2
z=z+x
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Dominator tree

a

b c d

Algorithm (phase 2)

for each node n in the dominator tree (pre-order)
  rename definitions and uses of variables in n
  rename ϕ-functions parameters corresponding
    to n in all successors of n in the CFG.

b c

x=1
y=2
z=x+y

x1=1
y1=2
z1=x1+y1

y=y-1
x=x+y

y=y+1
x=y

x=ϕ(x,x)
y=ϕ(y,y) 
y=x*2
z=z+x

a

d

chosen pre-order: 
a,b,d,c

y2=y1-1
x2=x1+y2

x=ϕ(x2,x)
y=ϕ(y2,y) 
y=x*2
z=z+x

x3=ϕ(x2,x)
y3=ϕ(y2,y) 
y4=x3*2
z2=z1+x3
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26

Dominator tree

a

b c d

Algorithm (phase 2)

for each node n in the dominator tree (pre-order)
  rename definitions and uses of variables in n
  rename ϕ-functions parameters corresponding
    to n in all successors of n in the CFG.

b c

x=1
y=2
z=x+y

x1=1
y1=2
z1=x1+y1

y=y-1
x=x+y

y=y+1
x=y

x=ϕ(x,x)
y=ϕ(y,y) 
y=x*2
z=z+x

a

d

chosen pre-order: 
a,b,d,c

y2=y1-1
x2=x1+y2

y5=y1+1
x4=y1

x=ϕ(x2,x)
y=ϕ(y2,y) 
y=x*2
z=z+x

x3=ϕ(x2,x)
y3=ϕ(y2,y) 
y4=x3*2
z2=z1+x3



CFG

Example: phase 2

26

Dominator tree

a

b c d

Algorithm (phase 2)

for each node n in the dominator tree (pre-order)
  rename definitions and uses of variables in n
  rename ϕ-functions parameters corresponding
    to n in all successors of n in the CFG.

b c

x=1
y=2
z=x+y

x1=1
y1=2
z1=x1+y1

y=y-1
x=x+y

y=y+1
x=y

x=ϕ(x,x)
y=ϕ(y,y) 
y=x*2
z=z+x

a

d

chosen pre-order: 
a,b,d,c

y2=y1-1
x2=x1+y2

y5=y1+1
x4=y1

x=ϕ(x2,x)
y=ϕ(y2,y) 
y=x*2
z=z+x

x3=ϕ(x2,x)
y3=ϕ(y2,y) 
y4=x3*2
z2=z1+x3

x3=ϕ(x2,x4)
y3=ϕ(y2,y5) 
y4=x3*2
z2=z1+x3



Generating code from SSA 
form



Generating code from SSA

After the program has been turned into SSA form and the 
various optimisations performed on that representation, it 
must be transformed into executable form.

This implies in particular that ϕ-functions must be 
removed, as they cannot be implemented on standard 
machines.

28



Removing ϕ-functions

A ϕ-function of the form xi=ϕ(x1,…,xn) can be removed by 
inserting appropriate assignments to xi in all predecessors of 
the node containing that function.

This will introduce many assignments of the form xi=xj (that 
is, move instructions), but most of them will be removed 
later during register allocation, thanks to coalescing.

29



Removing ϕ-functions

30

x1=12
y1=15
if x1<a1

y2=x1
x2=x1+1

y3=x1+1

x3=ϕ(x2,x1)
y4=ϕ(y2,y3)
z=x3*y4

x1=12
y1=15
if x1<a1

y2=x1
x2=x1+1
x3=x2
y4=y2

y3=x1+1
x3=x1
y4=y3

z=x3*y4

ϕ-function 
removal



Critical edges

31

CFG edges that go from a node with multiple successors to 
a node with multiple predecessors are called critical edges.

While removing ϕ-functions, the presence of a critical edge 
from n1 to n2 leads to the insertion of redundant move 
instructions in n1, corresponding to the ϕ-functions of n2. 
Ideally, they should be executed only if control reaches n2 
later, but this is not certain when n1 executes.



Edge splitting

Critical edges can easily be avoided completely using edge 
splitting.

Edge splitting consists in replacing all critical edges leading 
from a node n1 to a node n2 by two edges: one from n1 to a 
new empty node n3, and one from n3 to n2.

Since the new empty block n3 has only one predecessor 
and one successor, this effectively removes the critical 
edge.

32



Without edge splitting

33

x1=12
y1=15
if x1<y1

y2=x1
x2=x1+1

x3=ϕ(x2,x1)
y3=ϕ(y2,y1)
z=x3*y3

ϕ-function 
removal

x1=12
y1=15
x3=x1
y3=y1
if x1<y1

y2=x1
x2=x1+1
x3=x2
y3=y2

z=x3*y3

potentially 
redundantcritical 

edge



With edge splitting

34

x1=12
y1=15
if x1<y1

y2=x1
x2=x1+1

x3=ϕ(x2,x1)
y3=ϕ(y2,y1)
z=x3*y3

ϕ-function 
removal

x1=12
y1=15
if x1<y1

y2=x1
x2=x1+1
x3=x2
y3=y2

x3=x1
y3=y1

z=x3*y3



Using SSA form



Dead-code elimination

36

Basic dead-code elimination is trivial in SSA form: if a 
variable xi is not used in some expression, then its 
definition – of the form xi=yj op zk or xi=ϕ(xj, …, xk) – can 
be deleted. Of course, this is only true if that definition 
does not have side-effects.

The deletion of a definition can remove the last use of some 
other variable, in which case its definition can be deleted 
too, and so on…



Simple constant propagation

SSA form also simplifies constant propagation: whenever a 
definition of the form xi=c – where c is a constant – is 
encountered, then all uses of xi can be replaced by c. 
Moreover, the definition itself can be deleted from the 
program, as it is now dead.

Also, a ϕ-function of the form xi=ϕ(c1,…,cn) where
c1=…=cn can be replaced by xi=c1, which is then simplified 
as above.

37



Copy propagation

Copy propagation can be handled in a similar fashion as 
constant propagation: definitions of the form xi=yj, and 
single-argument ϕ-functions of the form xi=ϕ(yj) can be 
deleted, and all uses of xi replaced by uses of yj.

The same is true of constant folding: a definition of the form 
xi=c1 op c2 – where c1 and c2 are constants – can be 
deleted and all uses of xi replaced by the value of c1 op c2.
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Liveness analysis

SSA form also simplifies liveness analysis, and hence the 
construction of the interference graph needed by register 
allocation.

To compute the region where a variable xi is live in SSA 
form, it is sufficient to start from all uses of xi and walk 
backwards in the CFG until the definition of xi is 
encountered. The statements encountered during that walk 
are those during which xi is live.
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Summary

Static single-assignment (SSA) form is an intermediate 
representation where all names are defined exactly once. 
To enable this, ϕ-functions have to be inserted at join 
points in the CFG.

Transforming a program to SSA form is not completely 
trivial since unnecessary ϕ-functions should be avoided.

SSA encodes the data-flow of the program in its names, 
making several optimisations easier.
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