
Register allocation

Michel Schinz
Advanced Compiler Construction – 2008-05-16

Register allocation

The problem of register allocation consists in rewriting a
program that makes use of an unbounded number of local
variables – also called virtual or pseudo-registers – into one
that only makes use of machine registers.

If there are not enough machine registers to store all
variables, one or several variables must be spilled, i.e. stored
in memory instead of in a register.

Register allocation is generally one of the very last phases of
the compilation process – only instruction scheduling can
come later. It is performed on an intermediate language that
is extremely close to machine code.

2

Setting the scene
We will illustrate register allocation using programs written
in a slight extension of minivm’s assembly code:

• apart from n machine registers R0, …, Rn, an
unbounded number of virtual registers v0, v1, … are
available before register allocation,

• machine registers that play a special role, like the frame
pointer, are identified with a non-numerical index, e.g.
RFP; they are real registers nevertheless,

• a MOVE Ra Rb instruction is available, to copy the
contents of Rb into Ra,

• LOAD and STOR instructions also accept integer values
as their third operand, as in LOAD R1 R2 5.

3

In (hand-coded) assemblyIn minischeme

Example function
To illustrate register allocation techniques, we will use a
function computing the greatest common denominator of
two numbers using Euclid’s algorithm.

4

(define gcd
 (lambda (a b)
 (if (= 0 b)
 a
 (gcd b (% a b)))))

gcd: LINT R3 done
 JMPZ R3 R2
 ADD R3 R2 R0
 MOD R2 R1 R2
 ADD R1 R3 R0
 LINT R3 gcd
 JMPZ R3 R0
done: JMPZ R29 R0

Register allocation example

5

After register allocation

gcd:
loop: LINT R3 done
 JMPZ R3 R2
 MOVE R3 R2
 MOD R2 R1 R2
 MOVE R1 R3
 LINT R3 loop
 JMPZ R3 R0
done: JMPZ RLK R0

Allocation:
v0 → RLK
v1 → R1
v2 → R2
v3, v4, v5 → R3

Before register allocation

gcd: MOVE v0 RLK
 MOVE v1 R1
 MOVE v2 R2
loop: LINT v3 done
 JMPZ v3 v2
 MOVE v4 v2
 MOD v2 v1 v2
 MOVE v1 v4
 LINT v5 loop
 JMPZ v5 R0
done: MOVE R1 v1
 JMPZ v0 R0

R0: zero
R1, R2: parameters
RLK: return address

allocable
registers:
R1, R2,
R3, RLK

Register allocation techniques

6

We will study the two most commonly used techniques:

1. register allocation by graph colouring, which is
relatively slow but produces very good results,

2. linear scan register allocation, which is fast but
produces slightly worse results – at least in its standard
form.

Because it is slow, graph colouring tends to be used in
batch compilers, while linear scan tends to be used in JIT
compilers.

Both techniques are global, i.e. they allocate registers for a
whole function at a time.

Technique #1
Register allocation by

graph colouring

Allocation by graph colouring
The problem of register allocation can be reduced to the
well-known problem of graph colouring, as follows:

1. The interference graph is built. It has one node per
register (real or virtual), and two nodes are connected
by an edge iff their registers are simultaneously live.

2. The interference graph is coloured with at most K
colours – K = number of available registers – so that all
nodes have a different colour than all their neighbours.

Problems:

1. for an arbitrary graph, the colouring problem is NP-
complete,

2. a K-colouring might not even exist.

8

Interference graph example

9

Program

gcd:
 MOVE v0 RLK
 MOVE v1 R1
 MOVE v2 R2
loop:
 LINT v3 done
 JMPZ v3 v2
 MOVE v4 v2
 MOD v2 v1 v2
 MOVE v1 v4
 LINT v5 loop
 JMPZ v5 R0
done:
 MOVE R1 v1
 JMPZ v0 R0

Interference graphLiveness
{in}{out}

{R1,R2,RLK}{R1,R2,v0}
{R1,R2,v0}{R2,v0,v1}
{R2,v0,v1}{v0-v2}

{v0-v2}{v0-v3}
{v0-v3}{v0-v2}
{v0-v2} {v0-v2,v4}
{v0-v2,v4}{v0-v2,v4}
{v0-v2,v4}{v0-v2}
{v0-v2}{v0-v2,v5}
{v0-v2,v5}{v0-v2}

{v0,v1}{R1,v0}
{R1,v0}{R1}

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

Colouring example

10

Original
program

gcd:
 MOVE v0 RLK
 MOVE v1 R1
 MOVE v2 R2
loop:
 LINT v3 done
 JMPZ v3 v2
 MOVE v4 v2
 MOD v2 v1 v2
 MOVE v1 v4
 LINT v5 loop
 JMPZ v5 R0
done:
 MOVE R1 v1
 JMPZ v0 R0

Rewritten
program

gcd:
 MOVE RLK RLK
 MOVE R1 R1
 MOVE R2 R2
loop:
 LINT R3 done
 JMPZ R3 R2
 MOVE R3 R2
 MOD R2 R1 R2
 MOVE R1 R3
 LINT R3 loop
 JMPZ R3 R0
done:
 MOVE R1 R1
 JMPZ RLK R0

Coloured interference graph

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

1 1

2 2

3 3

3

3

4

4

Colouring example

10

Original
program

gcd:
 MOVE v0 RLK
 MOVE v1 R1
 MOVE v2 R2
loop:
 LINT v3 done
 JMPZ v3 v2
 MOVE v4 v2
 MOD v2 v1 v2
 MOVE v1 v4
 LINT v5 loop
 JMPZ v5 R0
done:
 MOVE R1 v1
 JMPZ v0 R0

Rewritten
program

gcd:
 MOVE RLK RLK
 MOVE R1 R1
 MOVE R2 R2
loop:
 LINT R3 done
 JMPZ R3 R2
 MOVE R3 R2
 MOD R2 R1 R2
 MOVE R1 R3
 LINT R3 loop
 JMPZ R3 R0
done:
 MOVE R1 R1
 JMPZ RLK R0

Coloured interference graph

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

1 1

2 2

3 3

3

3

4

4

Colouring example (2)

11

Original
program

gcd:
 MOVE v0 RLK
 MOVE v1 R1
 MOVE v2 R2
loop:
 LINT v3 done
 JMPZ v3 v2
 MOVE v4 v2
 MOD v2 v1 v2
 MOVE v1 v4
 LINT v5 loop
 JMPZ v5 R0
done:
 MOVE R1 v1
 JMPZ v0 R0

Rewritten
program

gcd:
 MOVE R3 RLK
 MOVE RLK R1
 MOVE R1 R2
loop:
 LINT R2 done
 JMPZ R2 R1
 MOVE R2 R1
 MOD R1 RLK R1
 MOVE RLK R2
 LINT R2 loop
 JMPZ R2 R0
done:
 MOVE R1 RLK
 JMPZ R3 R0

Coloured interference graph

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

1

2

3

4

3

4

1

2

2

2

This second colouring is also correct, but implies worse code!

Colouring by simplification

Colouring by simplification is a heuristic technique to (try to)
colour a graph with K colours.

It works as follows: if the graph G has at least one node n
with less than K neighbours, n is removed from G, and that
simplified graph is recursively coloured. Once this is done, n
is coloured with any colour not used by its neighbours.

There is always at least one colour available for n, because
its neighbours use at most K-1 colours.

If the graph does not contain a node with less than K
neighbours, K-colouring might not be feasible, but will be
attempted nevertheless, as we will see.

12

Colouring by simplification
To illustrate colouring by simplification, we can colour the
following graph with K=3 colours.

13

1

4 5

2

3

Stack of removed nodes:

Colouring by simplification
To illustrate colouring by simplification, we can colour the
following graph with K=3 colours.

13

1

4

2

3

Stack of removed nodes: 5

Colouring by simplification
To illustrate colouring by simplification, we can colour the
following graph with K=3 colours.

13

1

4

3

Stack of removed nodes: 5 2

Colouring by simplification
To illustrate colouring by simplification, we can colour the
following graph with K=3 colours.

13

4

3

Stack of removed nodes: 5 2 1

Colouring by simplification
To illustrate colouring by simplification, we can colour the
following graph with K=3 colours.

13

4

Stack of removed nodes: 5 2 1 3

Colouring by simplification
To illustrate colouring by simplification, we can colour the
following graph with K=3 colours.

13

Stack of removed nodes: 5 2 1 3

4

Colouring by simplification
To illustrate colouring by simplification, we can colour the
following graph with K=3 colours.

13

Stack of removed nodes: 5 2 1

4

3

Colouring by simplification
To illustrate colouring by simplification, we can colour the
following graph with K=3 colours.

13

Stack of removed nodes: 5 2

4

3

1

Colouring by simplification
To illustrate colouring by simplification, we can colour the
following graph with K=3 colours.

13

Stack of removed nodes: 5

4

3

1 2

Colouring by simplification
To illustrate colouring by simplification, we can colour the
following graph with K=3 colours.

13

Stack of removed nodes:

4

3

1 2

5

Spilling
(in colouring-based

allocators)

(Optimistic) spilling

During simplification, it is perfectly possible to reach a point
where all nodes have at least K neighbours.

When this occurs, a node n must be chosen to be spilled, i.e.
have its value stored in memory instead of in a register.

As a first approximation, we assume that the spilled value
does not interfere with any other value, remove its node from
the graph, and recursively colour the simplified graph as
usual.

After the simplified graph has been coloured, it is actually
possible that the neighbours of n do not use all the possible
colours! In this case, n is not spilled. Otherwise it must really
be spilled.

15

Spill costs

The node to spill could be chosen at random, but it is clearly
better to favour values that are not frequently used, or values
that interfere with many others.

The following formula is often used as a measure of the spill
cost for a node n. The node with the lowest cost should be
spilled first.

cost(n) = [rw0 + 10 rw1 + … + 10k rwk] / degree(n)

where rwi is the number of times the value of n is read or
written in a loop of depth i, and degree(n) is the number of
edges adjacent to n in the interference graph.

16

Spilling of pre-coloured nodes

As we have seen, the interference graph contains nodes
corresponding to the registers of the machine.

These nodes are said to be pre-coloured, because the colour
of each of them is given by the machine register it represents.

Pre-coloured nodes must never be simplified during the
colouring process, as by definition they cannot be spilled.

17

Spilling example
To illustrate spilling, let’s try to colour the same interference
graph as before, but with only three colours.

The graph does not contain a node with degree less than
three, so the one with the lowest cost must be spilled.

18

gcd:
 MOVE v0 RLK
 MOVE v1 R1
 MOVE v2 R2
loop:
 LINT v3 done
 JMPZ v3 v2
 MOVE v4 v2
 MOD v2 v1 v2
 MOVE v1 v4
 LINT v5 loop
 JMPZ v5 R0
done:
 MOVE R1 v1
 JMPZ v0 R0

node rw0 rw1 degree cost

v0 2 0 7 0.29

v1 2 2 6 3.67

v2 1 4 6 6.83

v3 0 2 3 6.67

v4 0 2 3 6.67

v5 0 2 3 6.67

cost = (rw0 + 10 rw1) / degree

Spilling example
Once v0, which has the lowest spill cost, is removed from
the graph, the simplified graph is 3-colourable.

19

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

1 1

2 2

3

3

3

3

Consequences of spilling

Once a node has been spilled, the original program must be
rewritten to take that spilling into account, as follows:

• just before the spilled value is read, code must be
inserted to fetch it from memory,

• just after the spilled value is written, code must be
inserted to write it back to memory.

Since that spilling code introduces new virtual registers, the
whole register allocation process must be restarted from the
beginning.

In practice, one or two iterations are enough in almost all
cases.

20

Spilling code integration

21

Rewritten program

gcd: ; allocate+link
 ; stack frame
 MOVE v6 RLK
 STOR v6 RFP 1
 MOVE v1 R1
 MOVE v2 R2
loop: LINT v3 done
 JMPZ v3 v2
 MOVE v4 v2
 MOD v2 v1 v2
 MOVE v1 v4
 LINT v5 loop
 JMPZ v5 R0
done: MOVE R1 v1
 LOAD v7 RFP 1
 ; unlink
 ; stack frame
 JMPZ v7 R0

Original program

gcd:
 MOVE v0 RLK
 MOVE v1 R1
 MOVE v2 R2
loop:
 LINT v3 done
 JMPZ v3 v2
 MOVE v4 v2
 MOD v2 v1 v2
 MOVE v1 v4
 LINT v5 loop
 JMPZ v5 R0
done:
 MOVE R1 v1
 JMPZ v0 R0

New interference graph

22

Interference graph w/ spilling

R1

R2

R
LK

v1

v2

v3

v4

v5

1

2

3

v6

v7

1

2

2

3

3

3

3

Final program

gcd: ; allocate+link
 ; stack frame
 MOVE RLK RLK
 STOR RLK RFP 1
 MOVE R1 R1
 MOVE R2 R2
loop: LINT RLK done
 JMPZ RLK R2
 MOVE RLK R2
 MOD R2 R1 R2
 MOVE R1 RLK
 LINT RLK loop
 JMPZ RLK R0
done: MOVE R1 R1
 LOAD R2 RFP 1
 ; unlink
 ; stack frame
 JMPZ R2 R0

New interference graph

22

Interference graph w/ spilling

R1

R2

R
LK

v1

v2

v3

v4

v5

1

2

3

v6

v7

1

2

2

3

3

3

3

Final program

gcd: ; allocate+link
 ; stack frame
 MOVE RLK RLK
 STOR RLK RFP 1
 MOVE R1 R1
 MOVE R2 R2
loop: LINT RLK done
 JMPZ RLK R2
 MOVE RLK R2
 MOD R2 R1 R2
 MOVE R1 RLK
 LINT RLK loop
 JMPZ RLK R0
done: MOVE R1 R1
 LOAD R2 RFP 1
 ; unlink
 ; stack frame
 JMPZ R2 R0

Coalescing
(in colouring-based

allocators)

Colouring quality

As we have seen in our first example, two valid K-colourings
of the same interference graph are not necessary equal: one
can lead to a much shorter program than the other.

This is due to the fact that a move instruction of the form

MOVE v1 v2

can be removed after register allocation if v1 and v2 end up
being allocated to the same register. (Of course, this also
holds when v1 or v2 is a real register before allocation).

A good register allocator must therefore try to make sure that
this happens as often as possible.

24

Coalescing
Given a MOVE instruction of the form

MOVE v1 v2
and provided that v1 and v2 do not interfere, it is always
possible to replace all instances of v1 and v2 by instances of
a new virtual register v1&2. Once this has been done, the
MOVE instruction becomes useless and can be removed.

This technique is known as coalescing, as the nodes of v1
and v2 in the interference graph coalesce into a single node.

Coalescing is not always a good idea, though: the coalesced
node can have a higher degree than the two original nodes,
which might make the graph impossible to colour with K
colours and require spilling! Some conservatism is required.

25

Coalescing heuristics

Two coalescing heuristics are commonly used:

Briggs: coalesce nodes n1 and n2 iff the resulting node has
less than K neighbours of significant degree (i.e. of a
degree greater or equal to K),

George: coalesce nodes n1 and n2 iff all neighbours of n1
either already interfere with n2 or are of insignificant
degree.

Both heuristics are safe, in that they will not turn a K-
colourable graph into a non-K-colourable one. But they are
also conservative, in that they might prevent a coalescing
that would be safe.

26

Coalescing example

27

non-
interfering,

move-related
nodes

node of
significant

degree

node of
insignificant

degree

coalescing of
R1 and v1
into R1v

R1v

R2

R
LK

v0

v2

v3

v4
v5

R3

R1

R2

R
LK

v0
v1

v2

v3

v4
v5

R3

Coalescing example (2)

28

coalescing of
R2 and v2
into R2v

R1v

R2

R
LK

v0

v2

v3

v4
v5

R3

R1v

R2v

R
LK

v0

v3

v4
v5

R3

R1v

R2v

R
LK
v

v3

v4
v5

R3

Coalescing example (3)

29

coalescing of
RLK and v0
into RLKv

R1v

R2v

R
LK

v0

v3

v4
v5

R3

R1v

R2v

R
LK
v

v3

v4
v5

R3

Coalescing example (3)

29

coalescing of
RLK and v0
into RLKv

R1v

R2v

R
LK

v0

v3

v4
v5

R3

4-colourable

Register classes

Most architectures separate the registers in several classes.
Even in modern RISC architectures, there is typically one
class for floating-point values and another one for integers
and pointers.

Register classes can easily be taken into account in a
colouring-based allocator: if a variable must be put in a
register of some class A, then its node can be made to
interfere with all pre-coloured nodes corresponding to
registers of other classes.

30

Technique #2
Linear scan register

allocation

Linear scan
The basic linear scan technique is very simple:

1. the program is linearised – i.e. represented as a linear
sequence of instructions, not as a graph,

2. a unique live range is computed for every variable,
going from the first to the last instruction during which
it is live,

3. registers are allocated by iterating over the intervals
sorted by increasing starting point: each time an
interval starts, the next free register is allocated to it,
and each time an interval ends, its register is freed,

4. if no register is available, the active range ending last is
chosen to have its variable spilled.

32

Linear scan example

33

Program

 1 gcd: MOVE v0 RLK
 2 MOVE v1 R1
 3 MOVE v2 R2
 4 loop: LINT v3 done
 5 JMPZ v3 v2
 6 MOVE v4 v2
 7 MOD v2 v1 v2
 8 MOVE v1 v4
 9 LINT v5 loop
10 JMPZ v5 R0
11 done: MOVE R1 v1
12 JMPZ v0 R0

Live ranges

v0: [1+,12-]
v1: [2+,11-]
v2: [3+,10+]
v3: [4+,5-]
v4: [6+,8-]
v5: [9+,10-]

Notation:
 i+ entry of instr. i
 i- exit of instr. i

Let’s try to allocate registers for our gcd procedure using
linear scan, first with four allocable registers, then with three.

Linear scan example (4 regs)

34

1 2 3 4 5 6 7 8 9 10 11 12
v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation

1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v3→RLK
6+ [6+,8-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v4→RLK
9+ [9+,10-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v5→RLK

Result: no spilling

Linear scan example (3 regs)

35

1 2 3 4 5 6 7 8 9 10 11 12
v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation

1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→RLK,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v3→RLK
6+ [6+,8-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v4→RLK
9+ [9+,10-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v5→RLK

Result: v0 is spilled during its whole life time!

Linear scan improvements

36

The basic linear scan algorithm is very simple but still
produces reasonably good code. It can be (and has been)
improved in many ways:

• the liveness information about virtual registers can be
described using a sequence of disjoint intervals instead
of a single one,

• virtual registers can be spilled for only a part of their
whole life time,

• more sophisticated heuristics can be used to select the
virtual register to spill,

• etc.

Summary

37

Register allocation is probably the most important compiler
optimisation.

Most current compilers allocate registers using one of the
following two techniques:

1. by transforming the register allocation problem into a
graph colouring problem, solved using heuristics,

2. by scanning the live ranges of variables and allocating
registers sequentially.

Graph colouring produces the best results but is more
complex and slower than the second one. For that reason,
graph colouring is usually used in compilers where code
quality is more important than compilation speed, and linear
scan in the other case.

