Dataflow analysis

Michel Schinz
Advanced compiler construction, 2008-05-09

Common subexp. elimination

The following C program fragment sets r to x^{y} for $y>0$.
How can it be (slightly) optimised?
int $y_{1}=1$;
int $r=x$;
while $\left(y_{1}!=y\right)$ \{
int $t=y_{1}{ }^{2}$;
if $\begin{gathered}\text { (} t<=y) \\ r= \\ r\end{gathered}$
$r=r * r$;
\} else \{
$r=r^{*} x ;$ Here, y_{1} 2 an $\begin{array}{r}\text { replaced by } t\end{array}$
\}
\}

Available expressions

Why is the previous optimisation valid?
Because at line 7 , where expression $\mathrm{y}_{1} * 2$ appears for the second time, it is available. That is, no matter how we reach line $7, y_{1} * 2$ will have been computed previously at line 4 . The computation of line 4 is still valid at line 7 because no redefinition of y_{1} appears between those two points.
Generally speaking, we can define for every program point the set of available expressions, which is the set of all nontrivial expressions whose value has already been computed at that point.

Formalising the analysis

How can these ideas be formalised

. introduce a variable i_{n} for the set of expressions available before node n, and a variable o_{n} for the set of expressions available after node n,
2. define equations between those variables,
3. solve those equations.

Solving equations

The equations can be solved by iteration:

1. initialise all sets $i_{1}, \ldots, i_{10}, o_{1}, \ldots, o_{10}$ to the set of all non-trivial expressions in the program, here $\left\{y_{1}{ }^{*} 2, y_{1}+1, r^{*} r, r^{*} x\right\}$,
2. viewing the equations as assignments, compute the "new" value of those sets,
3. iterate until fixed point is reached.

Initialisation is done that way because we are interested in finding the largest sets satisfying the equations: the larger a set is, the more information it conveys (for this analysis).

Solving equations

To simplify the equations, we can first replace all i_{k} variables by their value, to obtain a simpler system, and then solve that system.
For our example, we get:

$$
\begin{array}{ll}
O_{1}=\{ \} & O_{6}=O_{5} \downarrow r \\
O_{2}=O_{1} & O_{7}=O_{6} \downarrow \mathrm{y}_{1} \\
O_{3}=O_{2} \cap O_{7} \cap O_{10} & O_{9}=O_{5} \downarrow \mathrm{r} \\
O_{4}=O_{3} \cup\left\{\mathrm{y}_{1} * 2\right\} & O_{10}=O_{9} \downarrow \mathrm{y}_{1} \\
O_{5}=O_{4} &
\end{array}
$$

Generalisation

In general, for a node n of the control-flow graph, the equations have the following form:
$i_{n}=o_{p 1} \cap O_{p 2} \cap \ldots \cap O_{p k}$
where $p_{1} \ldots p_{k}$ are the predecessors of n.
$o_{n}=\operatorname{gen}_{\mathrm{AE}}(n) \cup\left(i_{n} \backslash \operatorname{kill}_{\mathrm{AE}}(n)\right)$
where $^{\operatorname{gen}_{\mathrm{AE}}(n)}$ are the non-trivial expressions computed by n, and $\operatorname{kill}_{\mathrm{AE}}(n)$ is the set of all non-trivial expressions that use a variable modified by n.
Substituting i_{n} in o_{n}, we obtain the following equation for o_{n} :
$o_{n}=\operatorname{gen}_{\mathrm{AE}}(n) \cup\left[\left(o_{p 1} \cap O_{p 2} \cap \ldots \cap O_{p k}\right) \backslash \operatorname{kill}_{\mathrm{AE}}(n)\right]$
These equations are the dataflow equations for the available expressions dataflow analysis.

Note: generated expressions

The equation giving the expressions available at the exit of node n is:
$o_{n}=\operatorname{gen}_{\mathrm{AE}}(n) \cup\left(i_{n} \backslash \operatorname{kill}_{\mathrm{AE}}(n)\right)$
where $\operatorname{gen}_{\mathrm{AE}}(n)$ are the non-trivial expressions computed by n, and kill $_{\mathrm{AE}}(n)$ is the set of all non-trivial expressions that use a variable modified by n.
In order for this equation to be correct, expressions that are computed by n but which use a variable modified by n must not be part of gen $\mathrm{n}_{\mathrm{AE}}(n)$. For example
$\operatorname{gen}_{A E}\left(x=y^{*} y\right)=\{y * y\}$ but $\operatorname{gen}_{\text {AE }}\left(y=y^{*} y\right)=\{ \}$

Dataflow analysis

Available expressions is one example of a dataflow analysis. Dataflow analysis is a global analysis framework that can be used to approximate various properties of programs.
The results of those analyses can be used to perform several optimisations, for example:

- common sub-expression elimination, as we have seen,
- dead-code elimination,
- constant propagation,
- register allocation,
- etc

Analysis scope

In this course, we will only consider intra-procedural dataflow analyses. That is, analyses that work on a single function at a time.
As in our example, those analyses work on the code of a function represented as a control-flow graph (CFG).
The nodes of the CFG are the statements of the function.
The edges of the CFG represent the flow of control: there is an edge from n_{1} to n_{2} if and only if control can flow immediately from n_{1} to n_{2}. That is, if the statements of n_{1} and n_{2} can be executed in direct succession.

Analysis \#2
Live variables

Live variable

A variable is said to be live at a given point if its value will be read later. While liveness is clearly undecidable, a conservative approximation can be computed using dataflow analysis.
This approximation can then be used, for example, to allocate registers: a set of variables that are never live at the same time can share a single register.

Intuitions

Intuitively, a variable is live after a node if it is live before any of its successors.

Moreover, a variable is live before node n if it is either read by n, or live after n and not written by n.

Finally, no variable is live after an exit node.

Equations

We associate to every node n a pair of variables $\left(i_{n}, O_{n}\right)$ that give the set of variables live when the node is entered or exited, respectively. These variables are defined as follows:
$i_{n}=\operatorname{gen}_{\mathrm{LV}}(n) \cup\left(o_{n} \backslash \operatorname{kill}_{\mathrm{LV}}(n)\right)$
where $\operatorname{gen}_{\mathrm{LV}}(n)$ is the set of variables read by n, and
$\operatorname{kill}_{\mathrm{LV}}(n)$ is the set of variables written by n.
$o_{n}=i_{s 1} \cup i_{s 2} \cup \ldots \cup i_{s k}$
where $s_{1} \ldots s_{k}$ are the successors of n.
Substituting o_{n} in i_{n}, we obtain the following equation for i_{n} :
$i_{n}=\operatorname{gen}_{\mathrm{LV}}(n) \cup\left[\left(i_{s 1} \cup i_{s 2} \cup \ldots \cup i_{s k}\right) \backslash \operatorname{kill} \mathrm{LV}^{(n)}(n)\right.$

Equation solving

We are interested in finding the smallest sets of variables live at a given point, as the information conveyed by a set decreases as its size increases
Therefore, to solve the equations by iteration, we initialise all sets with the empty set.

Using live variables

The previous analysis shows that neither x nor y are live at the same time as z. Therefore, z can be replaced by x or y, thereby removing one assignment.

21

Example

equations
$i_{1}=i_{2} \backslash\{\mathrm{x}\}$
$i_{2}=i_{3} \backslash\{\mathrm{y}\}$ $i_{3}=\{x, y\} \cup\left(i_{4} \cup i_{5}\right)$ $i_{4}=\{x\} \cup\left(i_{6} \backslash\{z\}\right)$ $i_{5}=\{y\} \cup\left(i_{6} \backslash\{z\}\right)$ $i_{6}=\{\mathbf{z}\}$
$1 i_{5}=\{x\}$
$i_{5}=\{y\}$
$i_{6}=\{z\}$

Analysis \#3 Reaching definitions

Reaching definitions

The reaching definitions for a program point are the assignments that may have defined the values of variables at that point.

Dataflow analysis can approximate the set of reaching definitions for all program points. These sets can then be used to perform constant propagation, for example

Intuitions

Intuitively, a definition reaches the beginning of a node if it reaches the exit of any of its predecessors.
Moreover, a definition contained in a node n always reaches the end of n itself.
Finally, a definition reaches the end of a node n if it reaches the beginning of n and is not killed by n itself.
A node n kills a definition d if and only if n is a definition and defines the same variable as d.)

As a first approximation, we consider that no definition reaches the beginning of the entry node.

Equations

We associate to every node n a pair of variables $\left(i_{n}, O_{n}\right)$ that give the set of definitions reaching the entry and exit of n, respectively. These variables are defined as follows:
$i_{n}=o_{p 1} \cup o_{p 2} \cup \ldots \cup o_{p k}$
where $p_{1} \ldots p_{k}$ are the predecessors of n.
$o_{n}=\operatorname{gen}_{\mathrm{RD}}(n) \cup\left(i_{n} \backslash \operatorname{kill}_{\mathrm{RD}}(n)\right)$
where $\operatorname{gen}_{\mathrm{RD}}(n)$ is $\{n\}$ if n is a definition, $\}$ otherwise, and $\operatorname{kill}_{R D}(n)$ is the set of definitions defining the same variable as n itself.
Substituting i_{n} in o_{n}, we obtain the following equation for o_{n} : $o_{n}=\operatorname{gen}_{\mathrm{RD}}(\mathrm{n}) \cup\left[\left(o_{p 1} \cup o_{p 2} \cup \ldots \cup o_{p k}\right) \backslash \operatorname{kill} \mathrm{RD}_{\mathrm{RD}}(n)\right]$

Equation solving

We are interested in finding the smallest sets of definitions reaching a point, as the information conveyed by a set decreases as its size increases.
Therefore, to solve the equations by iteration, we initialise all sets with the empty set.

Example

27

Using reaching definitions

The previous analysis shows that a single constant definition of y reaches node 5 . Therefore, y can be replaced by 3 .

Uninitialised variables

If the language being analysed permits uninitialised variables, all variables should be recorded as "initialised in some unknown location" at the entry of the first node!

equations	solution
$O_{1}=\{(\mathrm{x}, 1),(\mathrm{y}, ?),(\mathrm{z}, ?)\}$	$O_{1}=\{(\mathrm{x}, 1),(\mathrm{y}, ?),(\mathrm{z}, ?)\}$
$O_{2}=\{(\mathrm{z}, 2)\} \cup O_{1} \downarrow \mathrm{z}$	$O_{2}=\{(\mathrm{x}, 1),(\mathrm{y}, ?),(\mathrm{z}, 2)\}$
$O_{3}=\{(\mathrm{x}, 3)\} \cup\left(O_{2} \cup O_{6}\right) \downarrow \mathrm{x}$	$O_{3}=\{(\mathrm{x}, 3),(\mathrm{y}, ?),(\mathrm{y}, 5),(\mathrm{z}, 2)$,
$O_{4}=\{(\mathrm{z}, 4)\} \cup O_{3} \downarrow \mathrm{z}$	$(\mathrm{z}, 4)\}$
$O_{5}=\{(\mathrm{y}, 5)\} \cup O_{4} \downarrow \mathrm{y}$	$O_{4}=\{(\mathrm{x}, 3),(\mathrm{y}, ?),(\mathrm{y}, 5),(\mathrm{z}, 4)\}$
$O_{6}=O_{5}$	$O_{5}=\{(\mathrm{x}, 3),(\mathrm{y}, 5),(\mathrm{z}, 4)\}$
$O_{6}=\{(\mathrm{x}, 3),(\mathrm{y}, 5),(\mathrm{z}, 4)\}$	

Analysis \#4
 Very busy expressions

Intuitions

Intuitively, an expression is very busy after a node if it is very busy in all of its successors.

Moreover, an expression is very busy before node n if it is either evaluated by n itself, or very busy after n and not killed by n.
(A node kills an expression e if and only if it redefines a variable appearing in e.)
Finally, no expression is very busy after an exit node.

Very busy expressions

An expression is very busy at some program point if it will definitely be evaluated before its value changes

Dataflow analysis can approximate the set of very busy expressions for all program points. The result of that analysis can then be used to perform code hoisting: the computation of a very busy expression can be performed at the earliest point where it is busy

Equations

We associate to every node n a pair of variables $\left(i_{n}, O_{n}\right)$ that give the set of expressions that are very busy when the node is entered or exited, respectively. These variables are defined as follows:
$i_{n}=\operatorname{gen}_{\mathrm{VB}}(n) \cup\left(o_{n} \backslash \operatorname{kill}_{\mathrm{VB}}(n)\right)$
where $\operatorname{gen}_{\mathrm{VB}}(n)$ is the set of expressions evaluated by n, and $\operatorname{kill}_{\mathrm{VB}}(n)$ is the set of expressions killed by n,
$o_{n}=i_{s 1} \cap i_{s 2} \cap \ldots \cap i_{s k}$
where $s_{1} \ldots s_{k}$ are the successors of n.
Substituting o_{n} in i_{n}, we obtain the following equation for i_{n} :
$i_{n}=\operatorname{gen}_{\mathrm{VB}}(n) \cup\left[\left(i_{s 1} \cap i_{s 2} \cap \ldots \cap i_{s k}\right) \backslash \operatorname{kill}_{\mathrm{VB}}(n)\right]$

Equation solving

We are interested in finding the largest sets of very busy expressions, as the information conveyed by a set increases with its size.

Therefore, to solve the equations by iteration, we initialise all sets with the set of all non-trivial expressions appearing in the program.

Example

CFG	
$1 \mathrm{t}=\mathrm{a}+\mathrm{b}$	
\downarrow	
$2 u=\mathrm{a} * \mathrm{~b}$	
\downarrow	
3	
$4 \mathrm{t}=\mathrm{a}-\mathrm{b} 5$	b $5 u=a-b$
	$\mathrm{t}=\mathrm{t} * \mathrm{u}^{\text {/ }}$

equations
solution
$i_{1}=\{\mathrm{a}+\mathrm{b}\} \cup i_{2} \downarrow \mathrm{t} \quad i_{1}=\{\mathrm{a}+\mathrm{b}, \mathrm{a}-\mathrm{b}, \mathrm{a} * \mathrm{~b}\}$
$i_{2}=\{\mathrm{a} * \mathrm{~b}\} \cup i_{3} \downarrow \mathrm{u} \quad i_{2}=\{\mathrm{a}-\mathrm{b}, \mathrm{a} * \mathrm{~b}\}$
$i_{3}=i_{4} \cap i_{5} \quad i_{3}=\{\mathrm{a}-\mathrm{b}\}$ $i_{4}=\{\mathrm{a}-\mathrm{b}\} \cup i_{6} \downarrow \mathrm{t} \quad i_{4}=\{\mathrm{a}-\mathrm{b}\}$ $i_{5}=\{\mathrm{a}-\mathrm{b}\} \cup i_{6} \downarrow \mathrm{u} \quad i_{5}=\{\mathrm{a}-\mathrm{b}\}$ $i_{6}=\{\mathrm{t} * \mathrm{u}\} \quad i_{6}=\{\mathrm{t} * \mathrm{u}\}$

Notation:
$S \downarrow \mathrm{x}=S \backslash\{$ all expressions using x$\}$

Using very busy expressions
The previous analysis shows that $a-b$ is very busy before the conditional. It can therefore be evaluated earlier.

Equations summary

Analysis	Input equation	Output equation
available expressions	$\begin{aligned} & i_{n}= \\ & o_{p 1} \cap o_{p 2} \cap \ldots \cap o_{p k} \end{aligned}$	$\begin{aligned} & o_{n}= \\ & \operatorname{gen}_{\mathrm{AE}}(n) \cup\left(i_{n} \backslash \operatorname{kill}_{\mathrm{AE}}(n)\right) \end{aligned}$
live variables	$\begin{aligned} & i_{n}= \\ & \operatorname{gen}_{\mathrm{LV}}(n) \cup\left(o_{n} \backslash \operatorname{kill}_{\mathrm{LV}}(n)\right) \end{aligned}$	$\begin{aligned} & o_{n}= \\ & i_{s 1} \cup i_{s 2} \cup \ldots \cup i_{s k} \end{aligned}$
reaching definitions	$\begin{aligned} & i_{n}= \\ & o_{p 1} \cup o_{p 2} \cup \ldots \cup o_{p k} \end{aligned}$	$\begin{aligned} & O_{n}= \\ & \operatorname{gen}_{\mathrm{RD}}(n) \cup\left(i_{n} \backslash \operatorname{kill}_{\mathrm{RD}}(n)\right) \end{aligned}$
very busy expressions	$\begin{aligned} & i_{n}= \\ & \operatorname{gen}_{\mathrm{VB}}(n) \cup\left(o_{n} \backslash \mathrm{kill}_{\mathrm{VB}}(n)\right) \end{aligned}$	$\begin{aligned} & o_{n}= \\ & i_{s 1} \cap i_{s 2} \cap \ldots \cap i_{s k} \end{aligned}$

Speeding-up

 dataflow analysis
Classification of dataflow analyses

Taxonomy

Analyses for which the property of a node depends on those of its predecessors - e.g. available expressions, reaching definitions - are called forward analyses

Analyses for which the property of a node depends on those of its successors - e.g. very busy expressions, live variables are called backward analyses.
Analyses for which a property must be true in all successors or predecessors of a node to be true in that node - e.g. available, very busy expressions - are called must analyses. Analyses for which a property must be true in at least one successor or predecessor of a node to be true in that node e.g. reaching definitions, live variables - are called may analyses.

Speeding up analyses

Several techniques can be used to speed up the various dataflow analyses:

- an algorithm based on a work-list can avoid useless computations,
- the equations can be ordered in order to propagate information faster,
- the analyses can be performed on smaller control-flow graphs, where nodes are basic blocks instead of individual instructions,
- bit-vectors can be used to represent sets.

Running example

We will reuse the live variable analysis example to illustrate the techniques used to speed up dataflow analyses.

CFG	equations	solution
1 x=read-int	$i_{1}=i_{2} \backslash\{\mathrm{x}\}$	$i_{1}=\{ \}$
\downarrow	$i_{2}=i_{3} \backslash\{\mathrm{y}\}$	$i_{2}=\{\mathrm{x}\}$
$2 \mathrm{y}=$ read-int	$i_{3}=\{\mathrm{x}, \mathrm{y}\} \cup\left(i_{4} \cup i_{5}\right)$	$i_{3}=\{x, y\}$
\downarrow	$i_{4}=\{\mathrm{x}\} \cup\left(i_{6} \backslash\{\mathrm{z}\}\right)$	$i_{4}=\{\mathrm{x}\}$
3 if $x<y$	$i_{5}=\{\mathrm{y}\} \cup\left(i_{6} \backslash\{\mathrm{z}\}\right)$	$i_{5}=\{\mathrm{y}\}$
	$i_{6}=\{\mathrm{z}\}$	$i_{6}=\{\mathrm{z}\}$
$4 \mathrm{z}=\mathrm{x}$ 5 z=y		
$y \quad \measuredangle$		
6 print z		

Work-list algorithm

Computing the fixed point by simple iteration as we did works, but is wasteful as the information for all nodes is recomputed at every iteration.
It is possible to do better by remembering, for every variable v, the set $\operatorname{dep}(v)$ of the variables whose value depends on the value of v itself.
Then, whenever the value of some variable v changes, we only re-compute the value of the variables that belong to $\operatorname{dep}(v)$.

Base case: iteration

Computing the solution to the equations using the standard iterative technique requires 3 iterations, each of which requires 6 computations, for a total of 18 computations:

Iteration	i_{1}	i_{2}	i_{3}	i_{4}	i_{5}	i_{6}
0	$\}$	$\}$	$\}$	$\}$	$\}$	$\}$
1	$\}$	$\}$	$\{x, y\}$	$\{x\}$	$\{y\}$	$\{z\}$
2	$\}$	$\{x\}$	$\{x, y\}$	$\{x\}$	$\{y\}$	$\{z\}$
3	$\}$	$\{x\}$	$\{x, y\}$	$\{x\}$	$\{y\}$	$\{z\}$

$$
\begin{gathered}
i_{1}=i_{2} \backslash\{x\}, i_{2}=i_{3} \backslash\{y\}, i_{3}=\{x, y\} \cup\left(i_{4} \cup i_{5}\right), \\
i_{4}=\{x\} \cup\left(i_{6} \backslash\{z\}\right), i_{5}=\{\mathrm{y}\} \cup\left(i_{6} \backslash\{z\}\right), i_{6}=\{z\}
\end{gathered}
$$

Work-list algorithm in Scala

```
def solve[T](EqS: Array[(Int => T) => T]
            dep: Int => List[Int],
    def loop(q: List[Int], sol: Map[Int,T]): (Int => T) =
    q match { List[Int}
            val y = Eqs(i)(sol)
            if (y == sol(i))
            loop(is, sol)
            else
            loop(is ::: (dep(i) diff q), sol + i->y)
            case Nil =>
            sol
    loop(List.range(0, Eqs.length),
        Map.empty withDefaultValue init)
}
```


Work-list

It. \quad,	i_{1}	i_{2}	i_{3}	i_{4}	i_{5}	i_{6}
$0\left[i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right]$	\{\}	[\}	\}	[\}	\{	\{\}
$1\left[i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right]$	\{	\}\}	\{	\{	\{	\{\}
$2\left[i_{3}, i_{4}, i_{5}, i_{6}\right]$	\{	\{\}	\{	\{ 3	\{\}	[\}
$3\left[i_{4}, i_{5}, i_{6}, i_{2}\right]$	\{	\{\}	$\{\mathrm{x}, \mathrm{y}\}$	\{ 3	\{	\{\}
$4\left[i_{5}, i_{6}, i_{2}, i_{3}\right]$	\{	\{\}	$\{\mathrm{x}, \mathrm{y}\}$	\{x\}	(\})	[\}
$5\left[i_{6}, i_{2}, i_{3}\right]$	\{	\{\}	$\{\mathrm{x}, \mathrm{y}\}$	\{x\}	\{y\}	\{\}
$6\left[i_{2}, i_{3}, i_{4}, i_{5}\right]$	\{\}	\{\}	$\{\mathrm{x}, \mathrm{y}\}$	\{x\}	\{y\}	\{z\}
$7\left[i_{3}, i_{4}, i_{5}, i_{1}\right]$	\{	\{x\}	$\{\mathrm{x}, \mathrm{y}\}$	\{x\}	\{y\}	\{z\}
$8\left[i_{4}, i_{5}, i_{i}\right]$	\{\}	\{x\}	$\{\mathrm{x}, \mathrm{y}\}$	\{x\}	\{y\}	\{z\}
$9\left[i_{\text {, }}^{2}, i_{]}\right]$	\{\}	\{x\}	$\{\mathrm{x}, \mathrm{y}\}$	\{x\}	\{y\}	\{z\}
10 [i_{1}]	\{ 3	\{x\}	$\{\mathrm{x}, \mathrm{y}\}$	\{x\}	\{y\}	\{z\}
11 []	\{\}	\{x\}	$\{\mathrm{x}, \mathrm{y}\}$	\{x\}	\{y\}	\{z\}
$\begin{gathered} i_{1}=i_{2} \backslash\{\mathrm{x}\}, i_{2}=i_{3} \backslash\{\mathrm{y}\}, i_{3}=\{\mathrm{x}, \mathrm{y}\} \cup\left(i_{4} \cup i_{5}\right), \\ i_{4}=\{\mathrm{x}\} \cup\left(i_{6} \backslash\{\mathrm{z}\}\right), i_{5}=\{\mathrm{y}\} \cup\left(i_{6} \backslash\{\mathrm{z}\}\right), i_{6}=\{\mathrm{z}\} \end{gathered}$						

Node ordering

Using the work-list, "only" 11 computations were required to compute the result.

It is however clear that the process could be even faster if the elements of the work-list were ordered in the reverse order This is because live variables analysis is a backward analysis. The goal of node ordering is to order the elements of the work-list in such a way that the solution is computed as fast as possible.

(Reverse) post-order

For backward analyses, ordering the variables in the work-list according to a post-order traversal of the CFG nodes speeds up convergence. For forward analyses, reverse post-order has the same characteristic.

Post-order:
654321 or 645321
Reverse post-order:
123456 or 123546

Note: reverse post-order is not the same as pre-order!
Pre-order:
123465 or 123564

Working with basic blocks

Until now, CFG nodes were single instructions. In practice, basic blocks tend to be used as nodes, to reduce the size of the CFG.
When dataflow analysis is performed on a CFG composed of basic blocks, a pair of variables is attached to every block, not to every instruction.
Once the solution is known for basic blocks, computing the solution for individual instructions is easy

Work-list with node ordering

By ordering the nodes in post-order, only 6 computations are required to obtain the solution

It.	q	i_{1}	i_{2}	i_{3}	i_{4}	i_{5}
$0\left[i_{6}, i_{5}, i_{4}, i_{3}, i_{2}, i_{1}\right]$	$\}$	$\}$	$\}$	$\}$	$\}$	$\}$
$1\left[i_{5}, i_{4} i_{3}, i_{2}, i_{1}\right]$	$\}$	$\}$	$\}$	$\}$	$\}$	$\{z\}$
$2\left[i_{4}, i_{3}, i_{2}, i_{1}\right]$	$\}$	$\}$	$\}$	$\}$	$\{\mathrm{y}\}$	$\{z\}$
$3\left[i_{3}, i_{2}, i_{1}\right]$	$\}$	$\}$	$\}$	$\{\mathrm{x}\}$	$\{\mathrm{y}\}$	$\{\mathrm{z}\}$
$4\left[i_{2}, i_{1}\right]$	$\}$	$\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{x}\}$	$\{\mathrm{y}\}$	$\{\mathrm{z}\}$
$5\left[i_{1}\right]$	$\}$	$\{\mathrm{x}\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{x}\}$	$\{\mathrm{y}\}$	$\{\mathrm{z}\}$
6[]	$\}$	$\{\mathrm{x}\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{x}\}$	$\{\mathrm{y}\}$	$\{\mathrm{z}\}$
	$i_{1}=i_{2} \backslash\{\mathrm{x}\}, i_{2}=i_{3} \backslash\{\mathrm{y}\}, i_{3}=\{\mathrm{x}, \mathrm{y}\} \cup\left(i_{4} \cup i_{5}\right)$,					
	$i_{4}=\{\mathrm{x}\} \cup\left(i_{6} \backslash\{\mathrm{z}\}\right), i_{5}=\{\mathrm{y}\} \cup\left(i_{6} \backslash\{\mathrm{z}\}\right), i_{6}=\{\mathrm{z}\}$					

CFG with basic blocks

CFG	equations	solution
x=read -int	1a $i_{1}=\left(i_{2} \cup i_{3}\right) \backslash\{\mathrm{x}, \mathrm{y}\}$	$i_{1}=\{ \}$
$1 \mathrm{y}=$ read-int	1b $i_{2}=\{\mathrm{x}\} \cup\left(i_{4} \backslash\{\mathrm{z}\}\right)$	$i_{2}=\{\mathrm{x}\}$
if $\mathrm{x}<\mathrm{y}$	1c $i_{3}=\{\mathrm{y}\} \cup\left(i_{4} \backslash\{\mathrm{z}\}\right)$	$i_{3}=\{\mathrm{y}\}$
$\downarrow \quad \geqslant$	$i_{4}=\{\mathrm{z}\}$	$i_{4}=\{\mathrm{z}\}$
$2 \mathrm{z}=\mathrm{x} \quad 3 \mathrm{z}=\mathrm{y}$		
$\downarrow \quad \swarrow$		
4 print z		

The solution for individual
$i_{1 c}=\{\mathrm{x}, \mathrm{y}\} \cup\left(i_{2} \cup i_{3}\right)=\{\mathrm{x}, \mathrm{y}\}$
he basic-block solution, in a $i_{1 b}=i_{1 c} \backslash\{\mathrm{y}\}=\{\mathrm{x}\}$
single pass - here backwards:
$i_{1 a}=i_{1 b} \backslash\{\mathrm{x}\}=\{ \}$

Bit vectors

All dataflow analyses we have seen work on sets of values
If these sets are dense, a good way to represent them is to use bit vectors: a bit is associated to every possible element of the set, and its value is 1 if and only if the corresponding element belongs to the set.

On such a representation, set union is bitwise-or, set intersection is bitwise-and, set difference is bitwise-and composed with bitwise-negation.

Bit vector example

original equations
$i_{1}=i_{2} \backslash\{\mathrm{x}\}$
$i_{2}=i_{3} \backslash\{\mathrm{y}\}$
$i_{3}=\{x, y\} \cup\left(i_{4} \cup i_{5}\right)$
$i_{4}=\{x\} \cup\left(i_{6} \backslash\{z\}\right)$
$i_{5}=\{\mathbf{y}\} \cup\left(i_{6} \backslash\{\mathrm{z}\}\right)$
$i_{6}=\{\mathrm{z}\}$
original solution
$i_{1}=\{ \}$
$\begin{aligned} i_{1} & =\{ \} \\ i_{2} & =\{\mathrm{x}\}\end{aligned}$
$i_{3}=\{\mathrm{x}, \mathrm{y}\}$
$i_{4}=\{x\}$
$i_{5}=\{\mathrm{y}\}$
$i_{6}=\{\mathbf{z}\}$
bit vector equations
$i_{1}=i_{2} \& \sim 100$
$i_{2}=i_{3} \& \sim 010$
$i_{3}=110 \mid\left(i_{4} \mid i_{5}\right)$
$i_{4}=100 \mid\left(i_{6} \& \sim 001\right)$
$i_{5}=010 \mid\left(i_{6} \& \sim 001\right)$
$i_{6}=001$
bit vector solution
$i_{1}=000$
$i_{2}=100$
$i_{3}=110$
$i_{4}=100$
$i_{5}=010$
$i_{6}=001$

Summary

Dataflow analysis is a framework that can be used to approximate various properties about programs.
We have seen how to use the dataflow analysis framework to approximate liveness, available expressions, very busy expressions and reaching definitions. The result of those analysis can be used to perform various optimisations like dead-code elimination, constant propagation, etc.

