
Introduction to
program optimisation

Michel Schinz – based on Erik Stenman’s slides
Advanced compiler construction, 2008-05-02

Program optimisation

What is optimisation?

The goal of program optimisation is to discover, at 
compilation time, information about the run-time behaviour 
of the program, and use that information to improve the 
generated code.

What improving means depends on the situation: often it 
implies reducing the execution time, but it can also imply 
reducing the size of the generated code, or the consumed 
memory, etc.

In this course, we will concentrate on the optimisation of 
execution time.

3

Correctness of optimisation

The most important feature of any optimisation is that it is 
correct, in the sense that it preserves the behaviour of the 
original program.

This implies in particular that if the original program would 
have failed during execution, the optimised one must also 
fail, and for the same reason – a property that is often 
forgotten.

4

Unattainable optimality

The term optimisation seems to imply that the resulting 
program is optimal.

It can be shown, however, that it is not possible to 
completely optimise a program, as this would make the 
halting problem solvable.

So optimisation is really about improving the generated 
code, not about making it optimal.

5

Anatomy of an optimisation

All optimisations can be seen as being composed of two 
phases:

1. an analysis phase, during which some part of the 
program is examined and properties are extracted,

2. a rewriting phase, during which the optimisation is 
applied by transforming the program, according to the 
result of the analysis.

6



Optimisation kinds

Two kinds of optimisations can be distinguished:

• machine-independent optimisations, which decrease 
the amount of work that the program has to perform – 
e.g. dead code elimination,

• machine-dependent optimisations, which take 
advantage of characteristics of the target machine – e.g. 
instruction scheduling.

7

Optimisation examples

Machine-independent optimisations include:

• constant folding, which replaces constant expressions 
by their value,

• common sub-expression elimination, which avoids 
repeated evaluation of expressions,

• dead-code elimination, which eliminates code that will 
never be executed,

• etc.

8

Optimisation examples

Machine-dependent optimisations include:

• instruction scheduling, which rearranges instructions to 
avoid processor stalls,

• register allocation, which tries to use registers instead of 
memory as much as possible,

• peephole optimisation, which replaces given instruction 
sequences by faster alternatives,

• etc.

9

Optimisation scope

Optimisations can also be categorised according to their 
scope, that is the part of the program they analyse and 
transform:

• local optimisations work on basic blocks,

• global optimisations work on whole functions (and not 
on the whole program as their name suggests),

• whole-program optimisations work on the complete 
program.

10

Program representation

The representation used for the program plays a crucial role 
for optimisation. It must be at the right level of abstraction to 
ensure that:

• the analysis is as easy as possible,

• no opportunities are lost – e.g. some common sub-
expressions only appear after high-level constructs like 
array access have been translated to more basic 
instructions.

11

When to optimise

Optimisation phases can be placed at various stages of the 
compilation process.

Machine-independent optimisations tend to be placed at the 
beginning, and work on high-level representations of the 
program (e.g. the AST).

Machine-dependent optimisations tend to be placed at the 
end, and work on low-level representations of the program 
(e.g. linear code).

12



Inlining

Inlining

Inlining (or inline expansion) consists in replacing a call to a 
function with the body of that function – augmented with 
appropriate bindings for parameters.

In other words, it consists in performing !-reduction – i.e. 
function application – during compilation.

14

Inlining example

15

(car (cons 1 2))

(car (let ((fst 1) (snd 2))

       (vector fst snd)))

(let ((pair (let ((fst 1) (snd 2))

              (vector fst snd))))

  (vector-ref pair 0))

Inlining and other optimisations

16

In itself, inlining is already interesting as it saves the cost of 
function calls.

Moreover, inlining often opens the door to many other 
optimisations, as the inlined function can be specialised to 
its environment.

In our example, after inlining, the whole expression could be 
replaced by its value (1), using a series of well-known 
optimisations.

Inlining heuristics

Inlining cannot be performed indiscriminately as this would 
result in code size explosion in most cases. Therefore, 
heuristics have to be used to decide when inlining should be 
performed.

These heuristics are generally based on the size of the 
function to inline or the “importance” of the call site. Also, 
functions that are called from a single location in the 
program can always be inlined, and the original version 
deleted.

17

Implementing inlining

Inlining is relatively straightforward to implement, and can 
be performed early in the compilation process. Still, as we 
will see, a few pitfalls must be avoided!

Notice that most of these pitfalls can be avoided quite simply 
by choosing an appropriate representation for programs.

18



Pitfall: name capture

19

(define x 1)

(define succ (lambda (y) (+ y x)))

(define succ2 (lambda (x) (succ (succ x))))

(define succ2 (lambda (x) (+ (+ x x) x)))

Solution: use unique names, or some equivalent (e.g. symbols)

incorrect inlining of 
succ in succ2

name 
capture

name 
capture

Pitfall: side-effect duplication

20

(define print-and-ret (lambda (x) (print-int x) x))

(define twice (lambda (y) (+ y y)))

(define f (lambda (z) (twice (print-and-ret z))))

incorrect inlining 
of twice in f

(define f (lambda (z)

            (+ (print-and-ret z)

               (print-and-ret z))))

Solution: bind actual parameters to variables (using a let) to 
ensure that they are evaluated once.

Pitfall: side-effect elimination

21

(define first (lambda (x y) x))

(define print-and-ret

  (lambda (z) (first z (print-int z))))

incorrect inlining of first 
in print-and-ret

(define print-and-ret (lambda (z) z))

Solution: bind actual parameters to variables (using a let) to 
ensure that they are evaluated once.

Pitfall: recursive functions

22

(define fact

  (lambda (x)

    (if (= 0 x) 1 (* x (fact (- x 1))))))

(define fact

  (lambda (x)

    (if (= 0 x) 1

        (* x (let ((x1 (- x 1)))

               (if (= 0 x1) 1

                   (* x1 (fact (- x1 1)))))))))

Solution: only inline recursive functions a limited number of 
times – possibly 0.

correct inlining of fact in 
itself, but when should it end?

Inlining requirements

23

To be able to perform inlining at some point, it must be 
possible to determine statically the function that will be 
called.

This is easy in languages like C where most function calls 
designate a function using its name.

In object-oriented languages, this is much harder as most 
calls are method calls. As we have seen, it is generally not 
possible to know statically which actual method 
implementation corresponds to a given method call.

In functional languages, the extensive use of higher-order 
function causes the same problem.

Inlining in high-level languages

To perform inlining in object-oriented or functional 
languages, two techniques can be used:

1. A static analysis like CFA (control-flow analysis) can be 
used to compute, for every call site, a good 
approximation of the set of all possible targets of a call. 
If this set is a singleton – or, more generally, if it is 
small – inlining can be performed.

2. The actual targets of a call can be discovered at run 
time, and inlining can be performed then. This is the 
idea of the polymorphic inline caching technique we 
examined. It requires dynamic code generation.

24



Summary

The goal of optimisations is to analyse the program and then 
transform it based on that analysis, so that it performs better 
in some respect.

Inlining is one example of optimisation. It consists in 
replacing a call to a known function by the body of that 
function. It is interesting in itself as it saves the cost of a 
function call, but also because it enables further 
optimisation.

25


