
Closure conversion

Michel Schinz – parts based on slides by X. Leroy
Advanced compiler construction, 2008-04-04

Higher-order functions

Higher-order function

A higher-order function (HOF) is a function that either:

• takes another function as argument, or

• returns a function.

Many languages offer higher-order functions, but not all
provide the same power...

3

HOFs in C

In C, it is possible to pass a function as an argument, and to
return a function as a result.

However, C functions cannot be nested: they must all appear
at the top level. This severely restricts their usefulness, but
greatly simplifies their implementation – they can be
represented as simple code pointers.

4

HOFs in functional languages

In functional languages – Scala, Scheme, OCaml, etc. –
functions can be nested, and they can survive the scope that
defined them.

This is very powerful as it permits the definition of functions
that return “new” functions – e.g. functional composition.

However, as we will see, it also complicates the
representation of functions, as simple code pointers are no
longer sufficient.

5

HOF example

To illustrate the issues related to the representation of
functions in a functional language, we will use the following
Scheme example:

(define make-adder
 (lambda (x)
 (lambda (y) (+ x y))))

(define increment (make-adder 1))
(increment 41) ⇒ 42
(define decrement (make-adder -1))
(decrement 42) ⇒ 41

6

Representing adder functions

To represent the functions returned by make-adder, we
basically have two choices:

1. Keep the code pointer representation for functions.
However, that implies run-time code generation, as
each function returned by make-adder is different!

2. Find another representation for functions, which does
not depend on run-time code generation.

7

Closures

Closures

To adequately represent the functions returned by make-
adder, their code pointer must be augmented with the value
of x.

Such a combination of a code pointer and an environment
giving the values of the free variable(s) – here x – is called a
closure.

The name refers to the fact that the pair composed of the
code pointer and the environment is self-contained.

9

Closure

10

(make-adder 1) (make-adder -1)

code

environment

code

environment
compiled code for:
(lambda (y)
 (+ x y))

x!1 x!-1

shared
code

The code of a closure must be evaluated in its
environment, so that x is “known”.

Introducing closures

11

Using closures instead of function pointers to represent
functions changes the way they are manipulated at run time:

• function abstraction builds and returns a closure instead
of a simple code pointer,

• function application extracts the code pointer from the
closure, and invokes it with the environment as an
additional argument.

Representing closures

During function application, nothing is known about the
closure being called – it can be any closure in the program.

The code pointer must therefore be at a known and constant
location so that it can be extracted.

The values contained in the environment, however, are not
used during application itself: they will only be accessed by
the function body. This provides some freedom to place
them.

12

Flat closures
In flat (or one-block) closures, the environment is “inlined”
into the closure itself, instead of being referred from it. The
closure plays the role of the environment.

13

(make-adder 1)

code

x!1

flat closure

Recursive closures

Recursive functions need access to their own closure. For
example:

(define f
 (lambda (l) ... (map f l) ...))

Several techniques can be used to give a closure access to
itself:

1. the closure – here f – can be treated as a free variable,
and put in its own environment – leading to a cyclic
closure,

2. the closure can be rebuilt from scratch,

3. with flat closures, the environment is the closure, and
can be reused directly.

14

Mutually-recursive closures

Mutually-recursive functions all need access to the closures
of all the functions in the definition.

For example, in the following program, f needs access to the
closure of g, and the other way around:

(letrec ((f (lambda (l) …(compose f g)…))
 (g (lambda (l) …(compose g f)…)))
 …)

Solutions:

1. use cyclic closures, or

2. share a single closure with interior pointers (note:
interior pointers make the job of the GC harder).

15

Mutually-recursive closures

16

code ptr. f

v1

v2

v3

cyclic closures

code ptr. g

w1

w2

closure for f closure for g

shared closure

code ptr. f

code ptr. g

v1

v2

v3

w1

w2

closure for f

closure for g

Compiling closures

Closure conversion

In a compiler, closures can be implemented by a
simplification phase, called closure conversion.

Closure conversion transforms a program in which functions
can have free variables into an equivalent one containing
only closed functions.

The output of closure conversion is therefore a program in
which functions can be represented as code pointers!

18

Free variables

The free variables of a function are the variables that are
used but not defined in that function – i.e. they are defined
in some enclosing scope.

Global variables are never considered free, since they are
available everywhere.

19

Free variables example

Our adder example contains two functions, corresponding to
the two occurrences of the lambda keyword:

(define make-adder
 (lambda (x)
 (lambda (y) (+ x y))))

The outer one does not have any free variable: it is a closed
function, like all top-level functions. The inner one has a
single free variable: x.

20

Closing functions

Functions are closed by adding a parameter representing the
environment, and using it in the function’s body to access
free variables.

Function abstraction and application must of course be
adapted accordingly:

• abstraction must create and initialise the closure and its
environment,

• application must extract the environment and pass it as
an additional parameter.

21

Closing example

22

(define make-adder
 (vector (lambda (env1 x)
 (vector (lambda (env2 y)
 (+ (vector-ref env2 1) y))
 x))))

(define make-adder
 (lambda (x)
 (lambda (y) (+ x y))))

closure for
make-adder

closure
for anonymous

adder

Closure conversion for
minischeme

Minischeme closure conversion

As we have seen, closure conversion consists in closing
functions by passing them an environment containig the
values of their free variables.

We will specify the closing of minischeme functions as a
function C mapping potentially-open terms to closed ones.

For that, we first need to define a function F mapping a term
to the set of its free variables.

Note: to simplify presentation, we assume in the following
slides that all variables in a program have a unique name.

24

Minischeme free variables

F[(lambda (v1 ...) body1 ...)] =
 (F[body1] ! F[body2] ! ...) \ { v1, ... }

F[(if e1 e2 e3)] = F[e1] ! F[e2] ! F[e3]

F[(e1 e2 ...)] = F[e1] ! F[e2] ! ...

F[v] when v is local = { v }
F[v] when v is global or a primitive = "

Note: since a let form is equivalent to the application of
an anonymous function, it is easy to deduce the rule to
compute its free variables from the rules above. This is left
as an exercise.

25

Closing minischeme functions

Closing minischeme constructs that do not deal with
functions or variables is trivial:

C[(define name value)] =
 (define name C[value])

C[(let ((v1 e1) ...) body1 ...)] =
 (let ((v1 C[e1]) ...) C[body1] ...)

C[(if e1 e2 e3)] =
 (if C[e1] C[e2] C[e3])

C[x] where x is a number or identifier =
 x

26

Closing minischeme functions

Abstraction is closed by creating and returning the closure,
represented as a vector:

C[(lambda (v1 …) body1 …)] =
 (vector (lambda (env v1 …) E[C[body1],F,env] …)

 F1 F2 …)

where

• E[t,f,e] transforms t by replacing all occurrences of the
variables of f by accesses to corresponding slots in the
environment e.

• F = F[(lambda (v1 …) body1 …)] and Fi is its ith
component.

27

fresh variable

Closing minischeme functions

Finally, application extracts the code pointer from the
closure, and invokes it with the closure itself as the first
argument, followed by the other arguments:

C[(e1 e2 …)] when e1 is not a primitive =
 (let ((closure C[e1]))
 ((vector-ref closure 0) closure C[e2] …))

C[(e1 e2 …)] when e1 is a primitive =
 (e1 C[e2] …)

28

Closures and objects

Closures and objects

There is a strong similarity between closures and objects:
closures can be seen as objects with a single method –
containing the code of the closure – and a set of fields – the
environment.

In Java, the ability to define nested classes can be used to
simulate closures, but the syntax is too heavyweight to be
used often.

In Scala, a special syntax exists for anonymous functions,
which are translated to nested classes.

30

Closures in Scala

To see how closures are handled in Scala, we will look at
how the compiler translates the Scala equivalent of the
make-adder function:

def makeAdder(x: Int): Int=>Int =
 { y: Int => x+y }
val increment = makeAdder(1)
increment(41)

31

Closures in Scala

In a first phase, the anonymous function is turned into an
anonymous class of type Function1 – the type of functions
with one argument. This class is equipped with a single
apply method containing the code of the anonymous
function.

def makeAdder(x: Int): Function1[Int,Int]=
 new Function1[Int,Int] {
 def apply(y: Int): Int = x+y
 }
val increment = makeAdder(1)
increment.apply(41)

32

Closures in Scala

In a second phase, the anonymous class is named.

def makeAdder(x: Int):Function1[Int,Int]={
 class Anon extends Object
 with Function1[Int,Int] {
 def apply(y: Int): Int = x+y
 }
 new Anon
}
val increment = makeAdder(1)
increment.apply(41)

33

Closures in Scala

In a third phase, the Anon class is closed and hoisted to the
top level.

class Anon(x:Int) extends Object
 with Function1[Int,Int]{
 def apply(y: Int): Int = x+y
}
def makeAdder(x: Int):Function1[Int,Int]={
 new Anon(x)
}
val increment = makeAdder(1)
increment.apply(41)

34

Closures in Scala

Finally, the constructor of Anon is made explicit.

class Anon extends Object
 with Function1[Int,Int] {
 private var x: Int = _;
 def this(x0: Int) { this.x = x0 }
 def apply(y: Int): Int = x+y
}
def makeAdder(x: Int):Function1[Int,Int]={
 new Anon(x)
}
val increment = makeAdder(1)
increment.apply(41)

35

Summary

In C, all functions have to be at the top level, and can
therefore be represented as code pointers.

Functional languages allow functions to be nested and to
survive the scope that created them. They have to be
represented by a closure, which pairs a code pointer with an
environment giving the values of the code’s free variables.

Closures can be implemented by a program transformation
called closure conversion, which takes a program where
functional values have to be represented as closures and
returns an equivalent program where they can be
represented as simple code pointers.

36

