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Higher-order functions

Higher-order function

A higher-order function (HOF) is a function that either:

• takes another function as argument, or

• returns a function.

Many languages offer higher-order functions, but not all 
provide the same power...
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HOFs in C

In C, it is possible to pass a function as an argument, and to 
return a function as a result.

However, C functions cannot be nested: they must all appear 
at the top level. This severely restricts their usefulness, but 
greatly simplifies their implementation – they can be 
represented as simple code pointers.
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HOFs in functional languages

In functional languages – Scala, Scheme, OCaml, etc. – 
functions can be nested, and they can survive the scope that 
defined them.

This is very powerful as it permits the definition of functions 
that return “new” functions – e.g. functional composition.

However, as we will see, it also complicates the 
representation of functions, as simple code pointers are no 
longer sufficient.
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HOF example

To illustrate the issues related to the representation of 
functions in a functional language, we will use the following 
Scheme example:

(define make-adder
  (lambda (x)
    (lambda (y) (+ x y))))

(define increment (make-adder 1))
(increment 41) ⇒ 42
(define decrement (make-adder -1))
(decrement 42) ⇒ 41
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Representing adder functions

To represent the functions returned by make-adder, we 
basically have two choices:

1. Keep the code pointer representation for functions. 
However, that implies run-time code generation, as 
each function returned by make-adder is different!

2. Find another representation for functions, which does 
not depend on run-time code generation.
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Closures

Closures

To adequately represent the functions returned by make-
adder, their code pointer must be augmented with the value 
of x.

Such a combination of a code pointer and an environment 
giving the values of the free variable(s) – here x – is called a 
closure.

The name refers to the fact that the pair composed of the 
code pointer and the environment is self-contained.
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Closure
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The code of a closure must be evaluated in its 
environment, so that x is “known”.

Introducing closures

11

Using closures instead of function pointers to represent 
functions changes the way they are manipulated at run time:

• function abstraction builds and returns a closure instead 
of a simple code pointer,

• function application extracts the code pointer from the 
closure, and invokes it with the environment as an 
additional argument.

Representing closures

During function application, nothing is known about the 
closure being called – it can be any closure in the program.

The code pointer must therefore be at a known and constant 
location so that it can be extracted.

The values contained in the environment, however, are not 
used during application itself: they will only be accessed by 
the function body. This provides some freedom to place 
them.
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Flat closures
In flat (or one-block) closures, the environment is “inlined” 
into the closure itself, instead of being referred from it. The 
closure plays the role of the environment.
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Recursive closures

Recursive functions need access to their own closure. For 
example:

(define f
  (lambda (l) ... (map f l) ...))

Several techniques can be used to give a closure access to 
itself:

1. the closure – here f – can be treated as a free variable, 
and put in its own environment – leading to a cyclic 
closure,

2. the closure can be rebuilt from scratch,

3. with flat closures, the environment is the closure, and 
can be reused directly.
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Mutually-recursive closures

Mutually-recursive functions all need access to the closures 
of all the functions in the definition.

For example, in the following program, f needs access to the 
closure of g, and the other way around:

(letrec ((f (lambda (l) …(compose f g)…))
         (g (lambda (l) …(compose g f)…)))
  …)

Solutions:

1. use cyclic closures, or

2. share a single closure with interior pointers (note: 
interior pointers make the job of the GC harder).
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Mutually-recursive closures
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Compiling closures

Closure conversion

In a compiler, closures can be implemented by a 
simplification phase, called closure conversion.

Closure conversion transforms a program in which functions 
can have free variables into an equivalent one containing 
only closed functions.

The output of closure conversion is therefore a program in 
which functions can be represented as code pointers!
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Free variables

The free variables of a function are the variables that are 
used but not defined in that function – i.e. they are defined 
in some enclosing scope.

Global variables are never considered free, since they are 
available everywhere.
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Free variables example

Our adder example contains two functions, corresponding to 
the two occurrences of the lambda keyword:

(define make-adder
  (lambda (x)
    (lambda (y) (+ x y))))

The outer one does not have any free variable: it is a closed 
function, like all top-level functions. The inner one has a 
single free variable: x.
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Closing functions

Functions are closed by adding a parameter representing the 
environment, and using it in the function’s body to access 
free variables.

Function abstraction and application must of course be 
adapted accordingly:

• abstraction must create and initialise the closure and its 
environment,

• application must extract the environment and pass it as 
an additional parameter.

21

Closing example
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(define make-adder
  (vector (lambda (env1 x)
            (vector (lambda (env2 y)
                      (+ (vector-ref env2 1) y))
                    x))))

(define make-adder
  (lambda (x)
    (lambda (y) (+ x y))))

closure for 
make-adder

closure 
for anonymous 

adder

Closure conversion for 
minischeme

Minischeme closure conversion

As we have seen, closure conversion consists in closing 
functions by passing them an environment containig the 
values of their free variables.

We will specify the closing of minischeme functions as a 
function C mapping potentially-open terms to closed ones.

For that, we first need to define a function F mapping a term 
to the set of its free variables.

Note: to simplify presentation, we assume in the following 
slides that all variables in a program have a unique name.
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Minischeme free variables

F[(lambda (v1 ...) body1 ...)] =
  (F[body1] ! F[body2] ! ...) \ { v1, ... }

F[(if e1 e2 e3)] = F[e1] ! F[e2] ! F[e3]

F[(e1 e2 ...)] = F[e1] ! F[e2] ! ...

F[v] when v is local = { v }
F[v] when v is global or a primitive = "

Note: since a let form is equivalent to the application of 
an anonymous function, it is easy to deduce the rule to 
compute its free variables from the rules above. This is left 
as an exercise.
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Closing minischeme functions

Closing minischeme constructs that do not deal with 
functions or variables is trivial:

C[(define name value)] =
  (define name C[value])

C[(let ((v1 e1) ...) body1 ...)] =
  (let ((v1 C[e1]) ...) C[body1] ...)

C[(if e1 e2 e3)] =
  (if C[e1] C[e2] C[e3])

C[x] where x is a number or identifier =
  x
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Closing minischeme functions

Abstraction is closed by creating and returning the closure, 
represented as a vector:

C[(lambda (v1 …) body1 …)] =
  (vector (lambda (env v1 …) E[C[body1],F,env] …)

          F1 F2 …)

where

• E[t,f,e] transforms t by replacing all occurrences of the 
variables of f by accesses to corresponding slots in the 
environment e.

• F = F[(lambda (v1 …) body1 …)] and Fi is its ith 
component.
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fresh variable

Closing minischeme functions

Finally, application extracts the code pointer from the 
closure, and invokes it with the closure itself as the first 
argument, followed by the other arguments:

C[(e1 e2 …)] when e1 is not a primitive =
  (let ((closure C[e1]))
    ((vector-ref closure 0) closure C[e2] …))

C[(e1 e2 …)] when e1 is a primitive =
  (e1 C[e2] …)
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Closures and objects

Closures and objects

There is a strong similarity between closures and objects: 
closures can be seen as objects with a single method – 
containing the code of the closure – and a set of fields – the 
environment.

In Java, the ability to define nested classes can be used to 
simulate closures, but the syntax is too heavyweight to be 
used often.

In Scala, a special syntax exists for anonymous functions, 
which are translated to nested classes.
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Closures in Scala

To see how closures are handled in Scala, we will look at 
how the compiler translates the Scala equivalent of the 
make-adder function:

def makeAdder(x: Int): Int=>Int =
  { y: Int => x+y }
val increment = makeAdder(1)
increment(41)
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Closures in Scala

In a first phase, the anonymous function is turned into an 
anonymous class of type Function1 – the type of functions 
with one argument. This class is equipped with a single 
apply method containing the code of the anonymous 
function.

def makeAdder(x: Int): Function1[Int,Int]=
  new Function1[Int,Int] {
    def apply(y: Int): Int = x+y
  }
val increment = makeAdder(1)
increment.apply(41)
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Closures in Scala

In a second phase, the anonymous class is named.

def makeAdder(x: Int):Function1[Int,Int]={
  class Anon extends Object
             with Function1[Int,Int] {
    def apply(y: Int): Int = x+y
  }
  new Anon
}
val increment = makeAdder(1)
increment.apply(41)
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Closures in Scala

In a third phase, the Anon class is closed and hoisted to the 
top level.

class Anon(x:Int) extends Object
                  with Function1[Int,Int]{
  def apply(y: Int): Int = x+y
}
def makeAdder(x: Int):Function1[Int,Int]={
  new Anon(x)
}
val increment = makeAdder(1)
increment.apply(41)
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Closures in Scala

Finally, the constructor of Anon is made explicit.

class Anon extends Object
           with Function1[Int,Int] {
  private var x: Int = _;
  def this(x0: Int) { this.x = x0 }
  def apply(y: Int): Int = x+y
}
def makeAdder(x: Int):Function1[Int,Int]={
  new Anon(x)
}
val increment = makeAdder(1)
increment.apply(41)
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Summary

In C, all functions have to be at the top level, and can 
therefore be represented as code pointers.

Functional languages allow functions to be nested and to 
survive the scope that created them. They have to be 
represented by a closure, which pairs a code pointer with an 
environment giving the values of the code’s free variables.

Closures can be implemented by a program transformation 
called closure conversion, which takes a program where 
functional values have to be represented as closures and 
returns an equivalent program where they can be 
represented as simple code pointers.
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