
Memory management

Michel Schinz – based on Erik Stenman’s slides
Advanced compiler construction, 2008-03-07

Memory management

The memory of a computer is a finite resource. Typical
programs use a lot of memory over their lifetime, but not all
of it at the same time.

The aim of memory management is to use that finite
resource as efficiently as possible, according to some
criterion.

2

Memory areas

Every piece of memory used by a program is allocated from
one of three different areas:

• A static area, which is laid out at compilation time and
allocated when the program starts. The static area is
used to store global variables and constants.

• A stack, from which memory is allocated and freed
dynamically, in LIFO order. The stack is used to store the
arguments and local variables of functions, since in
most languages function calls happen in LIFO order.

• A heap, from which memory is allocated and freed
dynamically, in any order. The heap is used to store
objects that outlives the function that created them.

3

Memory organisation
The three areas just described can be organised as follows in
the address space of a running program:

4

Stack
(grows downward)

Heap
(grows upward)

Static area and code
(does not grow)low addresses

high addresses

The memory manager

The memory manager
Managing the static area and the stack is trivial.

Managing the heap is much more difficult because of the
irregular lifetimes of the blocks it contains. The memory
manager is the part of the run time system in charge of
managing heap memory.

Its job consists in answering to two kinds of requests:

1. allocation requests, which consist in finding a free
block of memory big enough to satisfy the request,
remove it from the set of free blocks, and return it to
the program,

2. deallocation requests, which consist in returning a
previously-allocated block to the set of free blocks, to
make it available for further allocation requests.

6

Free list

The memory manager must keep track of which parts of the
heap are free, and which are allocated.

For that purpose, free memory blocks are stored in a data-
structure called the free list. Notice that the term free list is
used even when the data-structure used to track free memory
is not a list.

There is no need to keep a list of allocated blocks, as it can
be computed using the free list – all blocks that are not in the
free list are allocated.

7

Free list storage
Since the blocks stored in the free list are by definition not
used by the program, the memory manager can store
information in them!

For example, if the free list is represented as a singly linked
list, then the pointer to the next block can be stored in the
blocks themselves:

8

head of
free list

heap

Block header
Apart from the link to their successor and/or to their
predecessor, free blocks must contain their size.

Allocated blocks do not require links to other blocks, but
must also contain their size.

This information is stored in the block’s header, situated just
before the area used by the client, and invisible to it.

9

size

previous

next

(unused area)

size

area used by
the client

free block allocated block

pointer
returned
to client

h
ea

d
er

Splitting and coalescing

When the memory manager has found a free block big
enough to satisfy an allocation request, it is possible for that
block to be bigger than the size requested. In that case, the
block must be split in two parts: one part is returned to the
client, while the other is put back into the free list.

The opposite must be done during deallocation: if the block
being freed is adjacent to one or two other free blocks, then
they all should be coalesced to form a bigger free block.

10

Fragmentation

The term fragmentation is used to designate two different but
similar problems associated with memory management:

1. external fragmentation refers to the fragmentation of
free memory in many small blocks,

2. internal fragmentation refers to the waste of memory
due to the use of a free block larger than required to
satisfy an allocation request.

11

External fragmentation
The following two heaps have the same amount of free
memory, but the first suffers from external fragmentation
while the second does not. As a consequence, some requests
can be fulfilled by the second but not by the first.

12

f a f a f a

a f

fragmented

not fragmented

a

f

allocated block

free block

Internal fragmentation
For various reasons – e.g. alignment constraints – the
memory manager sometimes allocates slightly more memory
than requested by the client. This results in small amounts of
wasted memory scattered in the heap.

This phenomenon is called internal fragmentation.

13

memory block

requested size

allocated size

wasted memory

Memory allocation

Allocation policies

When a block of memory is requested, there are in general
many free blocks big enough to satisfy the request.

An allocation policy must therefore be used to decide which
of those candidates to choose. A good allocation policy
should minimise fragmentation while being fast to
implement.

There are several such policies: first fit, next fit, best fit, worst
fit, etc.

15

First fit, next fit

First fit chooses the first block in the free list big enough to
satisfy the request, and splits it if necessary.

Next fit is like first fit, except that the search for a fitting
block starts where the last one ended, instead of at the
beginning of the free list.

It appears that next fit results in significantly more
fragmentation than first fit, as it mixes blocks allocated at
very different times.

16

Best fit, worst fit

Best fit chooses the smallest block big enough to satisfy the
request.

Worst fit chooses the biggest, with the aim of avoiding the
creation of too many small fragments. It doesn’t work well in
practice.

The major problem of these techniques is that they require
an exhaustive search of the free list, unless segregation
techniques are used.

17

Segregated free lists

Instead of having a single free list, it is possible to have
several of them, each holding free blocks of (approximately)
the same size.

These segregated free lists are organised in an array, to
quickly find the appropriate free list given a block size.

When a given free list is empty, bigger blocks taken from
adjacent lists are split in order to repopulate it.

18

Buddy systems

Buddy systems are a variant of segregated free lists.

The heap is initially viewed as one large block that can be
split in two smaller blocks – called buddies – of a given size.
Those smaller blocks can again be split in two smaller
buddies, and so on.

In a binary buddy system, a block is split in two buddies of
the same size. In a Fibonacci buddy system, a block is split
in two buddies whose size is given by a Fibonacci sequence
(sn = sn-1 + sn-2).

Coalescing is fast in buddy systems, since a block can only
be coalesced with its buddy, provided it is free too.

19

Allocation in a buddy system
This example illustrates how a 10 bytes block is allocated in
a binary buddy system with a heap of 256 bytes, initially
free.

20

256

128

64

32

16

8

4
allocated block
(wastes 6 bytes)

Memory deallocation

Memory deallocation

In a programming language, deallocation of heap memory
can be either explicit or implicit.

It is explicit when the language offers a way to declare a
memory block as being free – e.g. using delete in C++ or
free() in C.

It is implicit when the run time system infers that information
itself, usually by finding which allocated blocks are not
reachable anymore.

22

Explicit deallocation

Explicit memory deallocation presents several problems:

1. memory can be freed too early, which leads to
dangling pointers – and then to data corruption,
crashes, security issues, etc.

2. memory can be freed too late – or never – which leads
to space leaks.

Due to these problems, most recent programming languages
are designed to provide implicit deallocation, also called
automatic memory management – or garbage collection,
even though garbage collection refers to a specific kind of
automatic memory management.

23

Implicit deallocation

Implicit memory deallocation is based on the following
conservative assumption:

If a block of memory is reachable, then it will be used
again in the future, and therefore it cannot be freed. Only
unreachable memory blocks can be freed.

Since this assumption is conservative, it is possible to have
space leaks even with implicit memory deallocation. This
happens whenever a reference to a memory block is kept,
but the block is not accessed anymore.

However, implicit deallocation prevents dangling pointers.

24

Reachable objects

At any time during the execution of a program, we can
define the set of reachable objects as being:

• the objects immediately accessible from global
variables, the stack or registers – called the roots,

• the objects reachable from other reachable objects, by
following pointers.

Those objects form the reachability graph.

25

Reachability graph example

26

R0

R1

R2

R3

Reachable Unreachable

Garbage collection

27

Garbage collection (GC) is a common name for a set of
techniques that automatically reclaim objects that are not
reachable anymore.

We will examine several garbage collection techniques:

1. reference counting,

2. mark & sweep garbage collection, and

3. copying garbage collection.

Reference counting

Reference counting

The idea of reference counting is simple:

Every object carries a count of the number of pointers that
reference it. When this count reaches zero, the object is
guaranteed to be unreachable and can be deallocated.

Reference counting requires collaboration from the compiler
– or the programmer – to make sure that reference counts are
properly maintained!

29

Pros and cons

Reference counting is relatively easy to implement, even as a
library. It reclaims memory immediately.

However, it has an important impact on space consumption,
and speed of execution: every object must contain a counter,
and every pointer write must update it.

But the biggest problem is cyclic structures...

30

Cyclic structures

31

The reference count of objects that are part of a cycle in the
object graph never reaches zero, even when they become
unreachable!

This is the major problem of reference counting.

rc = 1

rc = 1

rc = 1

Cyclic structures

The problem with cyclic structures is due to the fact that
reference counts provide only an approximation of
reachability.

In other words, we have:

reference_count(x) = 0 ⇒ x is unreachable

but the opposite is not true!

32

Uses of reference counting

Due to its problem with cyclic structures, reference counting
is seldom used.

It is still interesting for systems that do not allow cyclic
structures to be created – e.g. hard links in Unix file systems.

It has also been used in combination with a mark!& sweep
GC, the latter being run infrequently to collect cyclic
structures.

33

Mark & sweep
garbage collection

Mark & sweep GC

Mark & sweep garbage collection is a GC technique that
proceeds in two successive phases:

1. in the marking phase, the reachability graph is
traversed and reachable objects are marked,

2. in the sweeping phase, all allocated objects are
examined, and unmarked ones are freed.

GC is triggered by a lack of memory, and must complete
before the program can be resumed. This is necessary to
ensure that the reachability graph is not modified by the
program while the GC traverses it.

35

Mark & sweep GC

36

R0

R1

R2

R3

Marking objects

37

Reachable objects must be marked in some way.

Since only one bit is required for the mark, it is possible to
store it in the block header, along with the size.

For example, if the system guarantees that all blocks have an
even size, then the least significant bit (LSB) of the block size
can be used for marking.

It is also possible to use “external” bit maps – stored in a
memory area that is private to the GC – to store mark bits.

Reachability graph traversal

The mark phase requires a depth-first traversal of the
reachabilty graph. This is usually implemented by recursion.

Recursive function calls use stack space, and since the depth
of the reachability graph is not bounded, the GC can
overflow its stack!

Several techniques – not presented here – have been
developed to either recover from those overflows, or avoid
them altogether by storing the stack in the objects being
traced.

38

Sweeping objects

Once the mark phase has terminated, all allocated but
unmarked objects can be freed. This is the job of the sweep
phase, which traverses the whole heap sequentially, looking
for unmarked objects and adding them to the free list.

Notice that unreachable objects cannot become reachable
again. It is therefore possible to sweep objects on demand, to
only fulfil the current memory need. This is called lazy
sweep.

39

Data representation

Data representation

Until now, we have assumed that the garbage collector is
able to traverse the object graph at run time. However, we
have not explained how it can do that, and in particular how
it is able to distinguish pointers from other data.

This ability depends on how data is represented in memory,
which itself depends on the features of the language being
compiled.

We will quickly examine several techniques to represent data
in memory, as well as their impact on the design of the
garbage collector.

41

Uniform data representation

In dynamically typed languages – e.g. Lisp, Scheme, Python,
Ruby, etc. – nothing is known at compilation time about the
type of data that the program will manipulate at run time. For
that reason, all data has to be represented in a uniform way.

Uniformity is often obtained by representing every value as a
pointer to a heap-allocated object containing the actual data,
as well as a header giving information about the type of the
data.

Even small values like integers or floating-point numbers are
heap allocated – they are said to be boxed.

42

Uniform data representation
When data is represented uniformly, any object in the heap
can be either:

• an atom, that is a basic value – integer, floating-point
number, character, etc. – containing no pointers to
further data, or

• a compound object, consisting only of pointers to other
objects.

The information about whether an object is an atom or a
compound object can be given by a single bit in its header.

Traversing the object graph with a uniform data
representation is trivial: atoms are known to contain no
pointers, while compound objects are known to contain only
pointers, all of which must be followed.

43

Tagging

Representing all values as heap-allocated objects has a cost
that is especially high for small objects like integers.

Tagging is a technique that can be used to avoid boxing
integers or other kinds of small data. It takes advantage of the
fact that, on most architectures, the least significant bit (LSB)
of all pointers is zero. Therefore, if the integer n is
represented by the value 2n+1, then it is possible to
distinguish pointers from integers just by looking at the LSB!
Of course, arithmetic operations on tagged integers have to
be adapted to take tagging into account.

The only problem of tagging is that it halves the range of
integers, which can sometimes be problematic.

44

Specialised data representation

In statically typed, monomorphic languages, the compiler
knows the type of all data that the program will manipulate
at run time. Therefore, it doesn’t need to represent all data
uniformly, but can use the natural representation for every
type of data.

In such a situation, integers and pointers are typically
represented by values that are indistinguishable at run time,
differing only in the way they are used.

For that reason, traversing the object graph at run time
requires help from the compiler, which must include enough
information in object headers to make the identification of
pointers possible.

45

Data representations
The following drawings show how an object containing the
integer 25, the real 3.14 and the string hello could be
represented using the three techniques described earlier.

46

25

3.14

hello

51

3.14

hello

25

3.14

hello

uniform
uniform

with tagging specialised

Polymorphism

Statically typed languages that offer polymorphism present
the same problem as dynamically typed languages: the type
of (some) data is not known at compilation time.

Three strategies are commonly used for such languages:

1. a uniform data representation is used for all data –
except maybe for integers that can be tagged, or

2. a specialised representation is used for data stored in
monomorphic containers, and a uniform one is used
for data stored in polymorphic containers – which
implies the generation of (un)boxing code, or

3. all polymorphism is “compiled away” through
specialisation.

47

Specialisation
Specialisation consists in removing polymorphism by
producing specialised, monomorphic code, each time some
polymorphic code is used.

For example, when the type List[Int] appears in a
program, the compiler produces a special class that
represents lists of integers – and of nothing else.

Specialisation removes polymorphism, and therefore the
need for a uniform representation of data. However, this is
achieved at a considerable cost in terms of code size.
Moreover, the specialisation process can loop for ever in
pathological cases like:

class C[T];

class D[T] extends C[D[D[T]]];

48

Pointers in the stack

So far, we have only explained how pointers can be found in
heap-allocated objects. But what about those appearing on
the stack?

The stack is nothing but a singly- (and often implicitly-)
linked list of stack frames. Therefore, the same solution as for
heap-allocated objects can be used: every stack frame
contains a header specifying the location of pointers in it.

This header can even be omitted if the compiler can
guarantee that only pointers, tagged integers or return
addresses are put on the stack.

49

Pointers in registers

For pointers appearing in registers, it is also possible to use a
“header” stored in a known location in memory, giving the
set of registers containing pointers.

Another solution is to partition the register set and guarantee
that some registers contain only pointers, while other
registers contain only other values.

50

Unknown data representation

All the data representation techniques presented until now
enable the GC to unambiguously identify pointers at run
time.

However, in some languages – e.g. C – it is not possible to
obtain that information, neither statically nor dynamically. Is
it still possible to perform garbage collection under such
conditions?

Perhaps surprisingly, the answer to that question is yes!

A garbage collector that is able to work even without
knowing how data is represented at run time is said to be
conservative.

51

Conservative
garbage collection

Conservative GC

A conservative garbage collector is one that is able to do its
job without having to unambiguously identify pointers at run
time.

The crucial observation behind conservative GC is that an
approximation of the reachability graph is sufficient to
collect (some) garbage, as long as that approximation
encompasses the actual reachability graph.

In other words, a conservative GC assumes that everything
that looks like a pointer to an allocated object is a pointer to
an allocated object. This assumption is conservative – in that
it can lead to the retention of dead objects – but safe – in that
it cannot lead to the freeing of live objects.

53

Pointer identification
A conservative garbage collector works like a normal one
except that it must try to guess whether a value is a pointer to
a heap-allocated object or not. The quality of the guess
determines the quality of the GC...

Some characteristics of the architecture or compiler can be
used to improve the quality of the guess, for example:

• Many architectures require pointers to be aligned in
memory on 2 or 4 bytes boundaries. Therefore,
unaligned potential pointers can be ignored.

• Many compilers guarantee that if an object is reachable,
then there exists at least one pointer to its beginning.
Therefore, potential pointers referring to the inside of
allocated heap objects can be ignored.

54

Copying
garbage collection

Copying GC

The idea of copying garbage collection is to split the heap in
two semi-spaces of equal size: the from-space and the to-
space.

Memory is allocated in from-space, while to-space is left
empty.

When from-space is full, all reachable objects in from-space
are copied to to-space, and pointers to them are updated
accordingly.

Finally, the role of the two spaces is exchanged, and the
program resumed.

56

Copying GC

57

R0 R1 R2 R3

From To

1

2 3

1
2

3

FromTo

Allocation in a copying GC

58

In a copying GC, memory is allocated linearly in from-space.

There is no free list to maintain, and no search to perform in
order to find a free block. All that is required is a pointer to
the border between the allocated and free area of from-
space.

Allocation in a copying GC is therefore very fast – as fast as
stack allocation.

Forwarding pointers

Before copying an object, a check must be made to see
whether it has already been copied. If this is the case, it must
not be copied again. Rather, the already-copied version must
be used.

How can this check be performed? By storing a forwarding
pointer in the object in from-space, after it has been copied.

59

Cheney’s copying GC

The copying GC algorithm presented before does a depth-
first traversal of the reachable graph. When it is implemented
using recursion, it can lead to stack overflow.

Cheney’s copying GC is an elegant GC technique that does a
breadth-first traversal of the reachable graph, requiring only
one pointer as additional state.

60

Cheney’s copying GC

In any breadth-first traversal, one has to remember the set of
nodes that have been visited, but whose children have not
been.

The basic idea of Cheney’s algorithm is to use to-space to
store this set of nodes, which can be represented using a
single pointer called scan.

This pointer partitions to-space in two parts: the nodes whose
children have been visited, and those whose children have
not been visited.

61

Cheney’s copying GC

62

4

3

2

1

scan free

1

2

3

4

From To

R0 R1 R2 R3

Copying vs. mark & sweep

63

The pros and cons of copying garbage collection, compared
to mark & sweep.

Pros Cons

no external fragmentation
uses twice as much (virtual)
memory

very fast allocation
requires precise identification
of pointers

no traversal of dead objects copying can be expensive

Generational
garbage collection

Generational GC

Empirical observation suggests that a large majority of the
objects die young, while a small minority lives for very long.

The idea of generational garbage collection is to partition
objects in generations – based on their age – and to collect
the young generation(s) more often than the old one(s).

This should improve the amount of memory collected per
objects visited. In a copying GC, this also avoids repeatedly
copying long-lived objects.

Note: The principles of generational garbage collection will
be presented here in the context of copying GCs, but can
also be applied to other GCs like mark & sweep.

65

Generational GC

In a generational GC, objects are partitioned into n
generations – often 2. The younger a generation is, the
smaller the amount of memory reserved to it.

All objects are initially allocated in the youngest generation.
When it is full, a minor collection is performed, to collect
memory in that generation only. Some of the surviving
objects are promoted to the next generation, based on a
promotion policy.

When an older generation is itself full, a major collection is
performed to collect memory in that generation and all the
younger ones.

66

Minor collection example

67

from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

6

3

Object 3 is
considered old
enough to be
promoted.

Heap organisation

68

from to

from to

from to

from

from to

from to

Eden

one semi-space
per generation

next generation
as semi-space

separate
creation space

yo
u

n
g

o
ld

copy promotion

too much memory
wasted…

too many objects
promoted…

good!

Hybrid heap organisation

69

Instead of managing all generations using a copying
algorithm, it is also possible to manage some of them – the
oldest, typically – using a mark & sweep algorithm.

Promotion policies

70

Generational GCs use a promotion policy to decide when
objects should be advanced to an older generation.

The simplest one – all survivors are advanced – can promote
very young objects, but is simple as object age does not need
to be recorded.

To avoid promoting very young objects it is sufficient to wait
until they survive a second collection before advancing
them.

Minor collection roots

The roots used for a minor collection must also include all
pointers from older generations to younger ones. Otherwise,
objects reachable only from the old generation would
incorrectly get collected!

71

R0 R1 R2 R3

young

old

from to

Inter-generational pointers

Pointers from old to young generations, called inter-
generational pointers can be handled in two different ways:

1. by scanning – without collecting – older generations
during a minor collection,

2. by detecting pointer writes using a write barrier –
implemented either in software or through hardware
support – and remembering inter-generational pointers.

72

Remembered set

A remembered set contains all old objects pointing to young
objects.

The write barrier maintains this set by adding objects to it if
and only if:

• the object into which the pointer is stored is not yet in
the remembered set, and

• the pointer is stored in an old object, and points to a
young one – although this can also be checked later by
the collector.

73

Card marking

Card marking is another technique to detect inter-
generational pointers.

Memory is divided into small, fixed sized areas called cards.
A card table remembers, for each card, whether it potentially
contains inter-generational pointers.

On each pointer write, the card is marked in the table, and
marked cards are scanned for inter-generational pointers
during collection.

74

Nepotism
Since old generations are not collected as often as young
ones, it is possible for dead old objects to prevent the
collection of dead young objects.

This problem is called nepotism.

75

R0 R1 R2 R3

young

old

from to

Pros and cons

Generational GC tends to reduce GC pause times since only
the youngest generation – which is also the smallest – is
collected most of the time.

In copying GCs, the use of generations also avoids copying
long-lived objects over and over.

The only problems of generational GCs are the cost of
maintaining the remembered set and nepotism.

76

Other kinds of garbage
collectors

Incremental / concurrent GC

An incremental garbage collector can collect memory in
small, incremental steps, thereby reducing the length of GC
pauses – a very important characteristic for interactive
applications.

Incremental GCs must be able to deal with modifications to
the reachability graph made by the main program – called
the mutator – while they attempt to compute it. This is
usually achieved using a write barrier that ensures that the
reachability graph observed by the GC is a valid
approximation of the real one.

Several techniques, not covered here, exist to guarantee the
validity of this approximation.

78

Parallel GC

Some parts of garbage collection can be sped up
considerably by performing them in parallel on several
processors. This is becoming important with the
popularisation of multi-core architectures.

For example, the marking phase of a mark & sweep GC can
easily be done in parallel by several processors.

(Remember that parallelism and concurrency are separate
and orthogonal concepts! A parallel GC does not have to be
concurrent, and a concurrent GC does not have to be
parallel.)

79

Virtual-memory-aware GC

The GCs presented until now are oblivious to the virtual
memory manager. Unfortunately, this can lead them to
perform badly when little physical memory is available: by
traversing all live objects, even those residing on pages
evicted to disk, they can incur considerable paging activity.

Bookmarking GC is an example of a GC that avoids this
problem. Its basic idea is to bookmark memory-resident
objects that are referenced by evicted objects. These
bookmarked objects are then considered reachable, and
garbage collection is performed without looking at – and
therefore loading – evicted objects.

80

Additional garbage
collector features

Finalisers

Some GCs make it possible to associate finalisers with
objects.

Finalisers are functions that are called when an object is
about to be collected. They are generally used to free
“external” resources associated with the object about to be
freed.

Since there is no guarantee about when finalisers are
invoked, the resource in question should not be scarce.

82

Finalisers issues

Finalisers are tricky for a number of reasons:

1. what do we do if a finaliser makes the finalised object
reachable again – e.g. by storing it in a global variable?

2. how do finalisers interact with concurrency – e.g. in
which thread are they run?

3. how can they be implemented efficiently in a copying
GC, which doesn’t visit dead objects?

83

Flavours of pointers

When the GC encounters a pointer, it usually treats it as a
strong pointer, meaning that the referenced object will be
considered as reachable and survive the collection.

It is sometimes useful to have weaker kinds of pointers,
which can refer to an object without preventing it from being
collected.

84

Weak pointers

The term weak pointer (or reference) designates pointers that
do not prevent an object from being collected.

During a GC, if an object is only reachable through weak
pointers, it is collected, and all (weak) pointers referencing it
are cleared.

Weak pointers are useful to implement caches,
canonicalising mappings, etc.

85

Example: Java references

Java provides several kinds of “non-strong” pointers, which
are, from strongest to weakest:

• soft references, cleared only when memory is low,

• weak references, cleared as early as possible,

• phantom references, similar to weak references except
that the referenced object is not available – and
therefore cannot be resurrected.

86

Summary
Memory management is an important part of the run time
system, especially for languages offering implicit memory
deallocation.

Implicit memory deallocation generally uses reachability as a
good but conservative approximation of liveness.

Reference counting cannot reclaim cyclic structures while
other forms of garbage collection, like mark & sweep, can.

Copying GCs copy reachable objects from one semi-space to
the other on every collection. This avoids all fragmentation,
and makes allocation very fast.

Generational GCs put young objects in a separate, smaller
area, collected more often. This reduces collection pauses, and
avoids the repeated copying of long-lived objects.

87

