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Memory management

The memory of a computer is a finite resource. Typical 
programs use a lot of memory over their lifetime, but not all 
of it at the same time.

The aim of memory management is to use that finite 
resource as efficiently as possible, according to some 
criterion.
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Memory areas

Every piece of memory used by a program is allocated from 
one of three different areas:

• A static area, which is laid out at compilation time and 
allocated when the program starts. The static area is 
used to store global variables and constants.

• A stack, from which memory is allocated and freed 
dynamically, in LIFO order. The stack is used to store the 
arguments and local variables of functions, since in 
most languages function calls happen in LIFO order.

• A heap, from which memory is allocated and freed 
dynamically, in any order. The heap is used to store 
objects that outlives the function that created them.
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Memory organisation
The three areas just described can be organised as follows in 
the address space of a running program:
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The memory manager

The memory manager
Managing the static area and the stack is trivial.

Managing the heap is much more difficult because of the 
irregular lifetimes of the blocks it contains. The memory 
manager is the part of the run time system in charge of 
managing heap memory.

Its job consists in answering to two kinds of requests:

1. allocation requests, which consist in finding a free 
block of memory big enough to satisfy the request, 
remove it from the set of free blocks, and return it to 
the program,

2. deallocation requests, which consist in returning a 
previously-allocated block to the set of free blocks, to 
make it available for further allocation requests.
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Free list

The memory manager must keep track of which parts of the 
heap are free, and which are allocated.

For that purpose, free memory blocks are stored in a data-
structure called the free list. Notice that the term free list is 
used even when the data-structure used to track free memory 
is not a list.

There is no need to keep a list of allocated blocks, as it can 
be computed using the free list – all blocks that are not in the 
free list are allocated.
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Free list storage
Since the blocks stored in the free list are by definition not 
used by the program, the memory manager can store 
information in them!

For example, if the free list is represented as a singly linked 
list, then the pointer to the next block can be stored in the 
blocks themselves:
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Block header
Apart from the link to their successor and/or to their 
predecessor, free blocks must contain their size.

Allocated blocks do not require links to other blocks, but 
must also contain their size.

This information is stored in the block’s header, situated just 
before the area used by the client, and invisible to it.
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Splitting and coalescing

When the memory manager has found a free block big 
enough to satisfy an allocation request, it is possible for that  
block to be bigger than the size requested. In that case, the 
block must be split in two parts: one part is returned to the 
client, while the other is put back into the free list.

The opposite must be done during deallocation: if the block 
being freed is adjacent to one or two other free blocks, then 
they all should be coalesced to form a bigger free block.
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Fragmentation

The term fragmentation is used to designate two different but 
similar problems associated with memory management:

1. external fragmentation refers to the fragmentation of 
free memory in many small blocks,

2. internal fragmentation refers to the waste of memory 
due to the use of a free block larger than required to 
satisfy an allocation request.
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External fragmentation
The following two heaps have the same amount of free 
memory, but the first suffers from external fragmentation 
while the second does not. As a consequence, some requests 
can be fulfilled by the second but not by the first.
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Internal fragmentation
For various reasons – e.g. alignment constraints – the 
memory manager sometimes allocates slightly more memory 
than requested by the client. This results in small amounts of 
wasted memory scattered in the heap.

This phenomenon is called internal fragmentation.
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Memory allocation

Allocation policies

When a block of memory is requested, there are in general  
many free blocks big enough to satisfy the request.

An allocation policy must therefore be used to decide which 
of those candidates to choose. A good allocation policy 
should minimise fragmentation while being fast to 
implement.

There are several such policies: first fit, next fit, best fit, worst 
fit, etc.
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First fit, next fit

First fit chooses the first block in the free list big enough to 
satisfy the request, and splits it if necessary.

Next fit is like first fit, except that the search for a fitting 
block starts where the last one ended, instead of at the 
beginning of the free list.

It appears that next fit results in significantly more 
fragmentation than first fit, as it mixes blocks allocated at 
very different times.
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Best fit, worst fit

Best fit chooses the smallest block big enough to satisfy the 
request.

Worst fit chooses the biggest, with the aim of avoiding the 
creation of too many small fragments. It doesn’t work well in 
practice.

The major problem of these techniques is that they require 
an exhaustive search of the free list, unless segregation 
techniques are used.
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Segregated free lists

Instead of having a single free list, it is possible to have 
several of them, each holding free blocks of (approximately) 
the same size.

These segregated free lists are organised in an array, to 
quickly find the appropriate free list given a block size.

When a given free list is empty, bigger blocks taken from 
adjacent lists are split in order to repopulate it.
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Buddy systems

Buddy systems are a variant of segregated free lists.

The heap is initially viewed as one large block that can be 
split in two smaller blocks – called buddies – of a given size. 
Those smaller blocks can again be split in two smaller 
buddies, and so on.

In a binary buddy system, a block is split in two buddies of 
the same size. In a Fibonacci buddy system, a block is split 
in two buddies whose size is given by a Fibonacci sequence 
(sn = sn-1 + sn-2).

Coalescing is fast in buddy systems, since a block can only 
be coalesced with its buddy, provided it is free too.
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Allocation in a buddy system
This example illustrates how a 10 bytes block is allocated in 
a binary buddy system with a heap of 256 bytes, initially 
free.
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Memory deallocation

Memory deallocation

In a programming language, deallocation of heap memory 
can be either explicit or implicit.

It is explicit when the language offers a way to declare a 
memory block as being free – e.g. using delete in C++ or 
free() in C.

It is implicit when the run time system infers that information 
itself, usually by finding which allocated blocks are not 
reachable anymore.
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Explicit deallocation

Explicit memory deallocation presents several problems:

1. memory can be freed too early, which leads to 
dangling pointers – and then to data corruption, 
crashes, security issues, etc.

2. memory can be freed too late – or never – which leads 
to space leaks.

Due to these problems, most recent programming languages 
are designed to provide implicit deallocation, also called 
automatic memory management – or garbage collection, 
even though garbage collection refers to a specific kind of 
automatic memory management.
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Implicit deallocation

Implicit memory deallocation is based on the following 
conservative assumption:

If a block of memory is reachable, then it will be used 
again in the future, and therefore it cannot be freed. Only 
unreachable memory blocks can be freed.

Since this assumption is conservative, it is possible to have 
space leaks even with implicit memory deallocation. This 
happens whenever a reference to a memory block is kept, 
but the block is not accessed anymore.

However, implicit deallocation prevents dangling pointers.
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Reachable objects

At any time during the execution of a program, we can 
define the set of reachable objects as being:

• the objects immediately accessible from global 
variables, the stack or registers – called the roots,

• the objects reachable from other reachable objects, by 
following pointers.

Those objects form the reachability graph.
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Reachability graph example
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Garbage collection
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Garbage collection (GC) is a common name for a set of 
techniques that automatically reclaim objects that are not 
reachable anymore.

We will examine several garbage collection techniques:

1. reference counting,

2. mark & sweep garbage collection, and

3. copying garbage collection.

Reference counting

Reference counting

The idea of reference counting is simple:

Every object carries a count of the number of pointers that 
reference it. When this count reaches zero, the object is 
guaranteed to be unreachable and can be deallocated.

Reference counting requires collaboration from the compiler 
– or the programmer – to make sure that reference counts are 
properly maintained!
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Pros and cons

Reference counting is relatively easy to implement, even as a 
library. It reclaims memory immediately.

However, it has an important impact on space consumption, 
and speed of execution: every object must contain a counter, 
and every pointer write must update it.

But the biggest problem is cyclic structures...
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Cyclic structures
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The reference count of objects that are part of a cycle in the 
object graph never reaches zero, even when they become 
unreachable!

This is the major problem of reference counting.

rc = 1

rc = 1

rc = 1

Cyclic structures

The problem with cyclic structures is due to the fact that 
reference counts provide only an approximation of 
reachability.

In other words, we have:

reference_count(x) = 0  ⇒  x is unreachable

but the opposite is not true!
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Uses of reference counting

Due to its problem with cyclic structures, reference counting 
is seldom used.

It is still interesting for systems that do not allow cyclic 
structures to be created – e.g. hard links in Unix file systems.

It has also been used in combination with a mark!& sweep 
GC, the latter being run infrequently to collect cyclic 
structures.
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Mark & sweep
garbage collection

Mark & sweep GC

Mark & sweep garbage collection is a GC technique that 
proceeds in two successive phases:

1. in the marking phase, the reachability graph is 
traversed and reachable objects are marked,

2. in the sweeping phase, all allocated objects are 
examined, and unmarked ones are freed.

GC is triggered by a lack of memory, and must complete 
before the program can be resumed. This is necessary to 
ensure that the reachability graph is not modified by the 
program while the GC traverses it.
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Mark & sweep GC
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Marking objects
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Reachable objects must be marked in some way.

Since only one bit is required for the mark, it is possible to 
store it in the block header, along with the size.

For example, if the system guarantees that all blocks have an 
even size, then the least significant bit (LSB) of the block size 
can be used for marking.

It is also possible to use “external” bit maps – stored in a 
memory area that is private to the GC – to store mark bits.

Reachability graph traversal

The mark phase requires a depth-first traversal of the 
reachabilty graph. This is usually implemented by recursion.

Recursive function calls use stack space, and since the depth 
of the reachability graph is not bounded, the GC can 
overflow its stack!

Several techniques – not presented here – have been 
developed to either recover from those overflows, or avoid 
them altogether by storing the stack in the objects being 
traced.
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Sweeping objects

Once the mark phase has terminated, all allocated but 
unmarked objects can be freed. This is the job of the sweep 
phase, which traverses the whole heap sequentially, looking 
for unmarked objects and adding them to the free list.

Notice that unreachable objects cannot become reachable 
again. It is therefore possible to sweep objects on demand, to 
only fulfil the current memory need. This is called lazy 
sweep.

39

Data representation

Data representation

Until now, we have assumed that the garbage collector is 
able to traverse the object graph at run time. However, we 
have not explained how it can do that, and in particular how 
it is able to distinguish pointers from other data.

This ability depends on how data is represented in memory, 
which itself depends on the features of the language being 
compiled.

We will quickly examine several techniques to represent data 
in memory, as well as their impact on the design of the 
garbage collector.
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Uniform data representation

In dynamically typed languages – e.g. Lisp, Scheme, Python, 
Ruby, etc. – nothing is known at compilation time about the 
type of data that the program will manipulate at run time. For 
that reason, all data has to be represented in a uniform way.

Uniformity is often obtained by representing every value as a 
pointer to a heap-allocated object containing the actual data, 
as well as a header giving information about the type of the 
data.

Even small values like integers or floating-point numbers are 
heap allocated – they are said to be boxed.
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Uniform data representation
When data is represented uniformly, any object in the heap 
can be either:

• an atom, that is a basic value – integer, floating-point 
number, character, etc. – containing no pointers to 
further data, or

• a compound object, consisting only of pointers to other 
objects.

The information about whether an object is an atom or a 
compound object can be given by a single bit in its header.

Traversing the object graph with a uniform data 
representation is trivial: atoms are known to contain no 
pointers, while compound objects are known to contain only 
pointers, all of which must be followed.
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Tagging

Representing all values as heap-allocated objects has a cost 
that is especially high for small objects like integers.

Tagging is a technique that can be used to avoid boxing 
integers or other kinds of small data. It takes advantage of the 
fact that, on most architectures, the least significant bit (LSB) 
of all pointers is zero. Therefore, if the integer n is 
represented by the value 2n+1, then it is possible to 
distinguish pointers from integers just by looking at the LSB! 
Of course, arithmetic operations on tagged integers have to 
be adapted to take tagging into account.

The only problem of tagging is that it halves the range of 
integers, which can sometimes be problematic.
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Specialised data representation

In statically typed, monomorphic languages, the compiler 
knows the type of all data that the program will manipulate 
at run time. Therefore, it doesn’t need to represent all data 
uniformly, but can use the natural representation for every 
type of data.

In such a situation, integers and pointers are typically 
represented by values that are indistinguishable at run time, 
differing only in the way they are used.

For that reason, traversing the object graph at run time 
requires help from the compiler, which must include enough 
information in object headers to make the identification of 
pointers possible.
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Data representations
The following drawings show how an object containing the 
integer 25, the real 3.14 and the string hello could be 
represented using the three techniques described earlier.
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Polymorphism

Statically typed languages that offer polymorphism present 
the same problem as dynamically typed languages: the type 
of (some) data is not known at compilation time.

Three strategies are commonly used for such languages:

1. a uniform data representation is used for all data – 
except maybe for integers that can be tagged, or

2. a specialised representation is used for data stored in 
monomorphic containers, and a uniform one is used 
for data stored in polymorphic containers – which 
implies the generation of (un)boxing code, or

3. all polymorphism is “compiled away” through 
specialisation.
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Specialisation
Specialisation consists in removing polymorphism by 
producing specialised, monomorphic code, each time some 
polymorphic code is used.

For example, when the type List[Int] appears in a 
program, the compiler produces a special class that 
represents lists of integers – and of nothing else.

Specialisation removes polymorphism, and therefore the 
need for a uniform representation of data. However, this is 
achieved at a considerable cost in terms of code size. 
Moreover, the specialisation process can loop for ever in 
pathological cases like:

class C[T];

class D[T] extends C[D[D[T]]];
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Pointers in the stack

So far, we have only explained how pointers can be found in 
heap-allocated objects. But what about those appearing on 
the stack?

The stack is nothing but a singly- (and often implicitly-) 
linked list of stack frames. Therefore, the same solution as for 
heap-allocated objects can be used: every stack frame 
contains a header specifying the location of pointers in it.

This header can even be omitted if the compiler can 
guarantee that only pointers, tagged integers or return 
addresses are put on the stack.
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Pointers in registers

For pointers appearing in registers, it is also possible to use a 
“header” stored in a known location in memory, giving the 
set of registers containing pointers.

Another solution is to partition the register set and guarantee 
that some registers contain only pointers, while other 
registers contain only other values.
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Unknown data representation

All the data representation techniques presented until now 
enable the GC to unambiguously identify pointers at run 
time.

However, in some languages – e.g. C – it is not possible to 
obtain that information, neither statically nor dynamically. Is 
it still possible to perform garbage collection under such 
conditions?

Perhaps surprisingly, the answer to that question is yes!

A garbage collector that is able to work even without 
knowing how data is represented at run time is said to be 
conservative.
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Conservative
garbage collection

Conservative GC

A conservative garbage collector is one that is able to do its 
job without having to unambiguously identify pointers at run 
time.

The crucial observation behind conservative GC is that an 
approximation of the reachability graph is sufficient to 
collect (some) garbage, as long as that approximation 
encompasses the actual reachability graph.

In other words, a conservative GC assumes that everything 
that looks like a pointer to an allocated object is a pointer to 
an allocated object. This assumption is conservative – in that 
it can lead to the retention of dead objects – but safe – in that 
it cannot lead to the freeing of live objects.
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Pointer identification
A conservative garbage collector works like a normal one 
except that it must try to guess whether a value is a pointer to 
a heap-allocated object or not. The quality of the guess 
determines the quality of the GC...

Some characteristics of the architecture or compiler can be 
used to improve the quality of the guess, for example:

• Many architectures require pointers to be aligned in 
memory on 2 or 4 bytes boundaries. Therefore, 
unaligned potential pointers can be ignored.

• Many compilers guarantee that if an object is reachable, 
then there exists at least one pointer to its beginning. 
Therefore, potential pointers referring to the inside of 
allocated heap objects can be ignored.
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Copying
garbage collection

Copying GC

The idea of copying garbage collection is to split the heap in 
two semi-spaces of equal size: the from-space and the to-
space.

Memory is allocated in from-space, while to-space is left 
empty.

When from-space is full, all reachable objects in from-space 
are copied to to-space, and pointers to them are updated 
accordingly.

Finally, the role of the two spaces is exchanged, and the 
program resumed.
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Copying GC
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Allocation in a copying GC
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In a copying GC, memory is allocated linearly in from-space.

There is no free list to maintain, and no search to perform in 
order to find a free block. All that is required is a pointer to 
the border between the allocated and free area of from-
space.

Allocation in a copying GC is therefore very fast – as fast as 
stack allocation.

Forwarding pointers

Before copying an object, a check must be made to see 
whether it has already been copied. If this is the case, it must 
not be copied again. Rather, the already-copied version must 
be used.

How can this check be performed? By storing a forwarding 
pointer in the object in from-space, after it has been copied.
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Cheney’s copying GC

The copying GC algorithm presented before does a depth-
first traversal of the reachable graph. When it is implemented 
using recursion, it can lead to stack overflow.

Cheney’s copying GC is an elegant GC technique that does a 
breadth-first traversal of the reachable graph, requiring only 
one pointer as additional state.
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Cheney’s copying GC

In any breadth-first traversal, one has to remember the set of 
nodes that have been visited, but whose children have not 
been.

The basic idea of Cheney’s algorithm is to use to-space to 
store this set of nodes, which can be represented using a 
single pointer called scan.

This pointer partitions to-space in two parts: the nodes whose 
children have been visited, and those whose children have 
not been visited.
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Cheney’s copying GC
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Copying vs. mark & sweep
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The pros and cons of copying garbage collection, compared 
to mark & sweep.

Pros Cons

no external fragmentation
uses twice as much (virtual) 
memory

very fast allocation
requires precise identification 
of pointers

no traversal of dead objects copying can be expensive

Generational
garbage collection

Generational GC

Empirical observation suggests that a large majority of the 
objects die young, while a small minority lives for very long.

The idea of generational garbage collection is to partition 
objects in generations – based on their age – and to collect 
the young generation(s) more often than the old one(s).

This should improve the amount of memory collected per 
objects visited. In a copying GC, this also avoids repeatedly 
copying long-lived objects.

Note: The principles of generational garbage collection will 
be presented here in the context of copying GCs, but can 
also be applied to other GCs like mark & sweep.
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Generational GC

In a generational GC, objects are partitioned into n 
generations – often 2. The younger a generation is, the 
smaller the amount of memory reserved to it.

All objects are initially allocated in the youngest generation. 
When it is full, a minor collection is performed, to collect 
memory in that generation only. Some of the surviving 
objects are promoted to the next generation, based on a 
promotion policy.

When an older generation is itself full, a major collection is 
performed to collect memory in that generation and all the 
younger ones.

66



Minor collection example
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Heap organisation
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Hybrid heap organisation
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Instead of managing all generations using a copying 
algorithm, it is also possible to manage some of them – the 
oldest, typically – using a mark & sweep algorithm.

Promotion policies
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Generational GCs use a promotion policy to decide when 
objects should be advanced to an older generation.

The simplest one – all survivors are advanced – can promote 
very young objects, but is simple as object age does not need 
to be recorded.

To avoid promoting very young objects it is sufficient to wait 
until they survive a second collection before advancing 
them.

Minor collection roots

The roots used for a minor collection must also include all  
pointers from older generations to younger ones. Otherwise, 
objects reachable only from the old generation would 
incorrectly get collected!

71

R0 R1 R2 R3

young

old

from to

Inter-generational pointers

Pointers from old to young generations, called inter-
generational pointers can be handled in two different ways:

1. by scanning – without collecting – older generations 
during a minor collection,

2. by detecting pointer writes using a write barrier – 
implemented either in software or through hardware 
support – and remembering inter-generational pointers.
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Remembered set

A remembered set contains all old objects pointing to young 
objects.

The write barrier maintains this set by adding objects to it if 
and only if:

• the object into which the pointer is stored is not yet in 
the remembered set, and

• the pointer is stored in an old object, and points to a 
young one – although this can also be checked later by 
the collector.
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Card marking

Card marking is another technique to detect inter-
generational pointers.

Memory is divided into small, fixed sized areas called cards. 
A card table remembers, for each card, whether it potentially 
contains inter-generational pointers.

On each pointer write, the card is marked in the table, and 
marked cards are scanned for inter-generational pointers 
during collection.
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Nepotism
Since old generations are not collected as often as young 
ones, it is possible for dead old objects to prevent the 
collection of dead young objects.

This problem is called nepotism.
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Pros and cons

Generational GC tends to reduce GC pause times since only 
the youngest generation – which is also the smallest – is 
collected most of the time.

In copying GCs, the use of generations also avoids copying 
long-lived objects over and over.

The only problems of generational GCs are the cost of 
maintaining the remembered set and nepotism.
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Other kinds of garbage 
collectors

Incremental / concurrent GC

An incremental garbage collector can collect memory in 
small, incremental steps, thereby reducing the length of GC 
pauses – a very important characteristic for interactive 
applications.

Incremental GCs must be able to deal with modifications to 
the reachability graph made by the main program – called 
the mutator – while they attempt to compute it. This is 
usually achieved using a write barrier that ensures that the 
reachability graph observed by the GC is a valid 
approximation of the real one.

Several techniques, not covered here, exist to guarantee the 
validity of this approximation.
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Parallel GC

Some parts of garbage collection can be sped up 
considerably by performing them in parallel on several 
processors. This is becoming important with the 
popularisation of multi-core architectures.

For example, the marking phase of a mark & sweep GC can 
easily be done in parallel by several processors.

(Remember that parallelism and concurrency are separate 
and orthogonal concepts! A parallel GC does not have to be 
concurrent, and a concurrent GC does not have to be 
parallel.)
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Virtual-memory-aware GC

The GCs presented until now are oblivious to the virtual 
memory manager. Unfortunately, this can lead them to 
perform badly when little physical memory is available: by 
traversing all live objects, even those residing on pages 
evicted to disk, they can incur considerable paging activity.

Bookmarking GC is an example of a GC that avoids this 
problem. Its basic idea is to bookmark memory-resident 
objects that are referenced by evicted objects. These 
bookmarked objects are then considered reachable, and 
garbage collection is performed without looking at – and 
therefore loading – evicted objects.
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Additional garbage 
collector features

Finalisers

Some GCs make it possible to associate finalisers with 
objects.

Finalisers are functions that are called when an object is 
about to be collected. They are generally used to free 
“external” resources associated with the object about to be 
freed.

Since there is no guarantee about when finalisers are 
invoked, the resource in question should not be scarce.
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Finalisers issues

Finalisers are tricky for a number of reasons:

1. what do we do if a finaliser makes the finalised object 
reachable again – e.g. by storing it in a global variable?

2. how do finalisers interact with concurrency – e.g. in 
which thread are they run?

3. how can they be implemented efficiently in a copying 
GC, which doesn’t visit dead objects?
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Flavours of pointers

When the GC encounters a pointer, it usually treats it as a 
strong pointer, meaning that the referenced object will be 
considered as reachable and survive the collection.

It is sometimes useful to have weaker kinds of pointers, 
which can refer to an object without preventing it from being 
collected.
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Weak pointers

The term weak pointer (or reference) designates pointers that 
do not prevent an object from being collected.

During a GC, if an object is only reachable through weak 
pointers, it is collected, and all (weak) pointers referencing  it 
are cleared.

Weak pointers are useful to implement caches, 
canonicalising mappings, etc.
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Example: Java references

Java provides several kinds of “non-strong” pointers, which 
are, from strongest to weakest:

• soft references, cleared only when memory is low,

• weak references, cleared as early as possible,

• phantom references, similar to weak references except 
that the referenced object is not available – and 
therefore cannot be resurrected.
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Summary
Memory management is an important part of the run time 
system, especially for languages offering implicit memory 
deallocation.

Implicit memory deallocation generally uses reachability as a 
good but conservative approximation of liveness.

Reference counting cannot reclaim cyclic structures while 
other forms of garbage collection, like mark & sweep, can.

Copying GCs copy reachable objects from one semi-space to 
the other on every collection. This avoids all fragmentation, 
and makes allocation very fast.

Generational GCs put young objects in a separate, smaller 
area, collected more often. This reduces collection pauses, and 
avoids the repeated copying of long-lived objects.
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