
Minischeme Project

Michel Schinz
Advanced compiler construction, 2008-02-22

The project

What you get:

1. an interpreter and a compiler for minischeme, written
in Scala,

2. a virtual machine, written in C.

What you have to do:

1. two non-graded “warm-up” exercises,

2. add a garbage collector to the virtual machine,

3. add support for closures to the compiler,

4. optimise tail calls in the compiler,

5. an advanced project of your choice.

2

The minischeme language

The minischeme language

Minischeme is a dialect of Scheme, itself a dialect of Lisp. Its
main characteristics are:

• it is “dynamically typed”,

• it has few side effects (exceptions: arrays, input/output),

• it is functional: functions are first-class values,

• it is very simple, with only four keywords (define,
let, lambda and if),

• memory is freed automatically.

4

Syntax
(define name expr)

Global value definition, binding the value of expr to the
name. Only valid at the top level.

Global values are visible in the whole program, but are
initialised in the order in which they are written.

(let ((name1 expr1) …) body1 … bodym)

Local value(s) definition: name1 is bound to the value of
expr1, name2 to the value of expr2, etc. while body1 … is
evaluated. The value of the whole expression is the value
of bodym.

Note: the names name1…n are only visible in body1…m, not
in expr1…n

5

Syntax
(lambda (name1 …) body1 …)

Anonymous function, with parameters name1 ... namen
and body body1 ... bodym.

(if exprcond exprthen exprelse)

Conditional: evaluate exprelse iff exprcond evaluates to 0,
otherwise evaluate exprthen.

(exprfun expr1 …)

Function application: call exprfun with expr1 … exprn as
arguments.

1 2 3 …

Integer constants.

6

Code Example

Function to compute xy on integers (y must be positive):

(define pow
 (lambda (x y)
 (if (= 0 y)
 1
 (if (= 0 (% y 2))
 (let ((z (pow x (/ y 2))))
 (* z z))
 (* x (pow x (- y 1)))))))

7

Let as syntactic sugar
Notice that let can be considered as syntactic sugar, as it is
completely equivalent to the immediate application of an
anonymous function:

8

(let ((name1 expr1)
 (name2 expr2)
 …)
 body1

 body2

 …)

((lambda (name1 name2 …)
 body1

 body2

 …)
 expr1

 expr2

 …)

⇔

Example:

(let ((x 40)
 (y 2))
 (+ x y))

((lambda (x y)
 (+ x y))
 40
 2)

⇔

Primitives

Minischeme is equipped with the following primitives, most
of which correspond directly to one VM instruction:

• Arithmetic primitives: +, -, *, /, %

• Logical primitives: <, <=, =

• Vector primitives: vector, vector-ref, vector-set!

• Input/ouput primitives: read-char, print-char

Primitives are invoked using the syntax of function
application, for example: (* 6 (+ 4 3))

However, primitives are not functions. In particular,
primitives cannot be manipulated as values, while functions
can.

9

Eta-exapansion

Since primitives cannot be manipulated as values, the
following definition should in principle not be accepted:

(define plus +)

However, the minischeme compiler performs a
transformation known as eta-expansion to transform the
above code into the following, legal one:

(define plus (lambda (x1 x2) (+ x1 x2)))

In summary, the aim of eta-expansion is that whenever the
programmer tries to use a primitive as a value, that primitive
is replaced by an equivalent anonymous function. This
guarantees that primitives are never used as values.

10

Vectors
Minischeme provides three primitives to work with vectors
(a.k.a. arrays):

• (vector e1 … en) creates a vector of n elements,
initialised with the values of e1 … en.

• (vector-ref v n) returns the nth element of v.
Indexing is 0-based.

• (vector-set! v n e) sets the nth element of v to
the value of e.

Notice that vector accepts a variable number of
expressions. Since minischeme does not provide the concept
of functions with a variable number of parameters, it is the
only primitive that cannot be eta-expanded.

11

Representing pairs

Pairs can easily be represented using vectors:

;; construct a pair
(define cons
 (lambda (f s)
 (vector f s)))
;; get first component
(define car (lambda (p) (vector-ref p 0)))
;; get second component
(define cdr (lambda (p) (vector-ref p 1)))

Note: the names cons, car and cdr are historical.

12

Representing lists

Lists can easily be represented using pairs: the first
component of the pair contains the head of the list, while the
second component contains its tail – another list. The empty
list is represented by a special value called nil.

This representation of lists by pairs is used in most functional
languages: Scheme, Haskell, OCaml, Scala, etc.

For example, the list 1,2,3,4 can be constructed by the
following code:
(cons 1 (cons 2 (cons 3 (cons 4 nil))))
and its second element can be accessed by the following
code, where lst represents the list:
(car (cdr lst))

13

The minivm virtual
machine

The minivm virtual machine
Minivm is a virtual machine designed for this project. Its
main characteristics are:

• it is register-based: there are 32 general-purpose
registers R0…R31, and a program counter,

• it is very simple, with only 16 instructions,

• it accepts textual assembly code as input.

The design goals were:

• to have a simple, easy to implement machine,

• to have it resemble a real processor, to make the
compiler realistic.

However, this machine is definitely not an ideal target for a
Scheme compiler!

15

Instruction set

Minivm instruction set can be categorised as follows:

• Arithmetic: ADD, SUB, MUL, DIV, MOD

• Control: ISLT, ISLE, ISEQ, JMPZ, HALT

• Memory: ALOC, LOAD, STOR, LINT

• Input/output: RCHR, PCHR

16

Arithmetic instructions

17

ADD Ra Rb Rc Ra ← Rb + Rc

SUB Ra Rb Rc Ra ← Rb - Rc

MUL Ra Rb Rc Ra ← Rb * Rc

DIV Ra Rb Rc Ra ← Rb / Rc

MOD Ra Rb Rc Ra ← Rb mod Rc

Control instructions

18

ISLT Ra Rb Rc Ra ← Rb < Rc [false: 0, true: 1]

ISLE Ra Rb Rc Ra ← Rb ≤ Rc [false: 0, true: 1]

ISEQ Ra Rb Rc Ra ← Rb = Rc [false: 0, true: 1]

JMPZ Ra Rb if Rb = 0 then PC ← Ra

HALT halt virtual machine

Memory instructions

19

LINT R C R ← C

LOAD Ra Rb Rc Ra ← Mem[Rb + w * Rc]

STOR Ra Rb Rc Mem[Rb + w * Rc] ← Ra

ALOC Ra Rb Ra ← new block of Rb words

w is the word size in bytes of the host architecture: 4 on 32
bits architectures, 8 on 64 bits architectures.

I/O instructions

20

RCHR R R ← read character from input

PCHR R print char(R) on output

Memory model

21

heap

code

The memory of minivm is split in two parts:

1. the bottom one contains the code,

2. the top one contains the heap.

Heap memory can be allocated using the
ALOC instruction.

There is no instruction to free heap memory.
Therefore, it is either never freed, or freed
implicitly by a garbage collector or similar
mechanism.

Implementation

22

You will be given a C implementation of minivm, with the
following limitations:

• heap memory is never freed, and the VM exits when all
available memory has been used,

• not as efficient as it could be.

Part of your job will be to improve it!

Implementation overview

The implementation is composed of the following three main
modules (C files):

• loader: parses textual assembly files and calls functions
in the engine module to emit the corresponding
instructions,

• engine: produces the representation of the program in
memory, based on instructions from the loader, and
execute it later,

• memory: allocates memory used to store the program
and the data used by it.

23

The minischeme
interpreter and compiler

Interpreter and compiler

You will be given a Scala implementation of a minischeme
interpreter and compiler. The interpreter implements the full
language, but the compiler has the following limitations:

• anonymous functions cannot refer to values defined in
an enclosing scope – unless they are global,

• no code is produced to perform dynamic checks, which
means that most type errors or incorrect array indexing
result in a VM crash (!),

• the produced code is not very good.

Your job will be to remove some of these limitations later.

25

Compiler organisation

26

Scanner

Parser

Name analyser

Code generator

tokens

tree

attributed tree

minivm code

Eta expander

Interpreter

attributed tree

Register usage

The compiler assigns specific roles to the following registers:

R0 – holds the constant 0,

R29 – holds the return address (LK),

R30 – points to the current stack frame (FP),

R31 – points to the global variables area (GP), containing
all global values.

Notice that these conventions are in no way enforced by the
VM itself!

27

Calling conventions

Function arguments are passed in registers R1…R28.

Functions with more than 28 arguments are not supported.
They could be supported by passing some of the arguments
on the stack, though.

The return value is put in R1.

Registers R0, R30 and R31 are callee-saved, R1…R29 are caller-
saved.

28

Stack

Stack frames are allocated from the heap, and a pointer to
the stack frame of the currently-executing function is stored
in R30 (a.k.a. the frame pointer FP).

The stack frame of a function f contains:

• the frame pointer of the function that called f,

• the return address,

• the arguments passed to f, which are saved on the stack
at function entry,

• all the local variables of f.

29

Characters and strings

The minischeme compiler defines syntactic sugar for
characters and strings.

A character constant is written #\c and is translated to the
ASCII code of c. For example, #\A is translated to 65.

A string constant is written "string" and is translated to a
vector. The first component of that vector contains the length
of the string, while the next ones contain its characters
encoded as above. For example, "HELLO" is translated to
(vector 5 72 69 76 76 79).

30

Code example

31

fact: LINT R2 else
 JMPZ R2 R1
 LINT R2 3
 ALOC R2 R2
 STOR R30 R2 R0
 LINT R3 1
 STOR R29 R2 R3
 LINT R3 2
 STOR R1 R2 R3
 ADD R30 R2 R0
 LINT R2 1
 SUB R1 R1 R2
 LINT R29 ret
 LINT R2 fact
 JMPZ R2 R0

ret: LINT R3 2
 LOAD R2 R30 R3
 MUL R1 R1 R2
 LINT R3 1
 LOAD R2 R30 R3
 LOAD R30 R30 R0
 JMPZ R2 R0
else: LINT R1 1
 JMPZ R29 R0

Code example

31

fact: LINT R2 else
 JMPZ R2 R1
 LINT R2 3
 ALOC R2 R2
 STOR R30 R2 R0
 LINT R3 1
 STOR R29 R2 R3
 LINT R3 2
 STOR R1 R2 R3
 ADD R30 R2 R0
 LINT R2 1
 SUB R1 R1 R2
 LINT R29 ret
 LINT R2 fact
 JMPZ R2 R0

ret: LINT R3 2
 LOAD R2 R30 R3
 MUL R1 R1 R2
 LINT R3 1
 LOAD R2 R30 R3
 LOAD R30 R30 R0
 JMPZ R2 R0
else: LINT R1 1
 JMPZ R29 R0

allocate,
initialise and

link frame

Code example

31

fact: LINT R2 else
 JMPZ R2 R1
 LINT R2 3
 ALOC R2 R2
 STOR R30 R2 R0
 LINT R3 1
 STOR R29 R2 R3
 LINT R3 2
 STOR R1 R2 R3
 ADD R30 R2 R0
 LINT R2 1
 SUB R1 R1 R2
 LINT R29 ret
 LINT R2 fact
 JMPZ R2 R0

ret: LINT R3 2
 LOAD R2 R30 R3
 MUL R1 R1 R2
 LINT R3 1
 LOAD R2 R30 R3
 LOAD R30 R30 R0
 JMPZ R2 R0
else: LINT R1 1
 JMPZ R29 R0

allocate,
initialise and

link frame

perform
recursive

call

Code example

31

fact: LINT R2 else
 JMPZ R2 R1
 LINT R2 3
 ALOC R2 R2
 STOR R30 R2 R0
 LINT R3 1
 STOR R29 R2 R3
 LINT R3 2
 STOR R1 R2 R3
 ADD R30 R2 R0
 LINT R2 1
 SUB R1 R1 R2
 LINT R29 ret
 LINT R2 fact
 JMPZ R2 R0

ret: LINT R3 2
 LOAD R2 R30 R3
 MUL R1 R1 R2
 LINT R3 1
 LOAD R2 R30 R3
 LOAD R30 R30 R0
 JMPZ R2 R0
else: LINT R1 1
 JMPZ R29 R0

allocate,
initialise and

link frame

perform
recursive

call

compute
result

Code example

31

fact: LINT R2 else
 JMPZ R2 R1
 LINT R2 3
 ALOC R2 R2
 STOR R30 R2 R0
 LINT R3 1
 STOR R29 R2 R3
 LINT R3 2
 STOR R1 R2 R3
 ADD R30 R2 R0
 LINT R2 1
 SUB R1 R1 R2
 LINT R29 ret
 LINT R2 fact
 JMPZ R2 R0

ret: LINT R3 2
 LOAD R2 R30 R3
 MUL R1 R1 R2
 LINT R3 1
 LOAD R2 R30 R3
 LOAD R30 R30 R0
 JMPZ R2 R0
else: LINT R1 1
 JMPZ R29 R0

allocate,
initialise and

link frame

perform
recursive

call

compute
result

unlink
frame and

return

