
Course Presentation

Michele Schinz
Advanced compiler construction, 2008-02-22

General course
information

Course goals

The goal of this course is to teach you:

1. how to compile high-level functional and object-
oriented programming languages, and

2. how to optimise the generated code.

To achieve these goals, the course is split in two parts:

1. a part covering virtual machines, memory
management, closure conversion, etc.

2. a part covering data-flow analysis, register allocation,
etc.

3

Evaluation

Evaluation will be based on:

• three “basic” projects, made in groups of two persons at
most,

• one advanced project, made individually,

• an individual exam – oral or written – at the end of the
semester.

Notice that the exam will take place during the last week of
the semester, not after it.

4

Grading scheme
The final grade will be computed using the following weights:

5

Part Weight

Basic project 1: garbage collector 15%

Basic project 2: closure conversion 15%

Basic project 3: tail call elimination 10%

Advanced project 30%

Exam 30%

The evaluation of each project part will take into account not
only the correctness of the solution, but also its quality (coding
style, efficiency, etc.).

Project overview

You will have to improve a compiler and a virtual machine
for minischeme, a tiny dialect of Scheme – itself a dialect of
Lisp.

For example, the map function is minischeme is written:

(define map
 (lambda (f l)
 (if (null? l)
 nil
 (cons (f (head l))
 (map f (tail l))))))

The compiler is written in Scala, the VM in C.

6

Project parts

The project is split in two parts:

1. a basic part, in which all groups have to complete the
same three tasks,

2. an advanced part, for which every student must choose
one task among those proposed, complete it and write
a short report about the result.

7

Resources

The course has a Web page:

http://lamp.epfl.ch/teaching/advanced_compiler

Questions can either be asked during the exercise sessions,
or through the course’s newsgroup:

epfl.ic.cours.act

For urgent or private matters, e-mail can also be used:

Michel.Schinz@epfl.ch

8

Course overview

What is a compiler?

10

Your current view of a compiler must be something like this:

Lexical analysis

Syntactical analysis

Name & type analysis

Code generation

Character stream

Token stream

Tree

Attributed tree

Executable code

Scanner

Parser

Analyser

Generator

What is a compiler, really?

11

Real compilers are often more complicated…

Scanner

Parser

Analyser

Generator

multiple
simplification and

optimisation phases

sophisticated
run time system

Additional phases

12

Simplification phases transform the program so that complex
concepts of the language – pattern matching, anonymous
functions, etc. – are translated using simpler ones.

Optimisation phases transform the program so that it
hopefully makes better use of some resource – e.g. CPU
cycles, memory, etc.

Of course, all these phases must preserve the meaning of the
original program!

Simplification phases

13

Example of simplification phase: Java compilers have a
simplification phase that transforms nested classes to top-
level ones.

class Out {
 void f1() { }
 class In {
 void f2() {
 f1();
 }
 }
}

class Out {
 void f1() { }
}
class Out$In {
 final Out this$0;
 Out$In(Out o) {
 this$0 = o;
 }
 void f2() {
 this$0.f1();
 }
}

Optimisation phases

14

Example of optimisation phase: Java compilers optimise
expressions involving constant values. That includes
removing dead code, i.e. code that can never be executed.

class C {
 public final static boolean debug = !true;
 int f() {
 if (debug) {
 System.out.println("C.f() called");
 }
 return 10;
 }
} dead code, removed

during compilation

Intermediate representations

15

To manipulate the program, simplification and optimisation
phases must represent it in some way.

One possibility is to use the representation produced by the
parser – the abstract syntax tree (AST).

The AST is perfectly suited to certain tasks, but other
intermediate representations (IR) exist and are more
appropriate in some situations.

Kinds of IRs

Intermediate representations can broadly be split in three
categories:

1. graphical IRs, which represent the program as a graph,

2. linear IRs, which represent the program as a linear
sequence of instructions, and

3. hybrid IRs, which are partly graphical, partly linear.

16

Graphical IRs

Graphical intermediate representations represent the
program as a graph.

They are often used in the initial phases of the compiler. In
particular, the AST produced by the parser is a graphical IR.

Examples: ASTs, some kinds of control-flow graphs, etc.

17

Graphical IR example

18

x!12

y!5

if x<y

x!y x!2*y

z!x/y

This is an example of a
control-flow graph
(CFG). Nodes are
instructions, and edges
represent the possible
flow of control: if there
is an edge from n1 to n2,
then control can flow
directly from n1 to n2.

Linear IRs

19

Linear intermediate representations represent the program
as a sequence of instructions.

They are often used in the final phases of the compiler, since
machine code itself is linear.

Examples: three-address code, stack languages, etc.

Linear IR example

20

 x!12
 y!5
 if x<y goto L1
 x!y
 goto L2
L1: x!2*y
L2: z!x/y

Hybrid IRs

21

Hybrid intermediate representations have graphical and
linear components.

For example, most control-flow graphs are hybrid, unlike the
one presented before: the nodes in the CFG are linear
sequences of instructions – called basic blocks – but the CFG
itself is a graph.

Hybrid IR example

22

x!12
y!5
if x<y

x!y x!2*y

z!x/y

basic
block

A basic block is a maximal sequence of instructions such
that control always enters at the top and leaves at the
bottom.

This CFG is equivalent
to the one presented
before, but its nodes are
basic blocks and not
single instructions. It
therefore contains fewer
nodes.

Intermediate languages

23

Intermediate representations that can be represented
textually as a program are often called intermediate
languages.

Intermediate languages are similar to normal programming
languages, but designed with different goals. For example,
simplicity is usually preferred to conciseness.

Some intermediate languages are typed. This can help
debugging the compiler, as the result of each phase can be
type-checked.

Run time system
Implementing a high-level programming language usually
means more than just writing a compiler!

A complete run time system (RTS) must be written, to assist
the execution of compiled programs by providing various
services like memory management, threads, etc.

For example, the Java Virtual Machine is the run time system
for Java, Scala, Groovy and many other programming
languages. It handles (lazy) class loading, byte-code
verification and interpretation, just-in-time compilation,
threading, garbage collection, etc. and provides a debugging
interface.

A good Java Virtual Machine is actually more complex to
develop than a Java compiler!

24

Memory management

Most modern programming languages offer automatic
memory management: the programmer allocates memory
explicitly, but deallocation is performed automatically.

The deallocation of memory is usually performed by a part of
the run time system called the garbage collector (GC).

A garbage collector periodically frees all memory that has
been allocated by the program but is not reachable anymore.

25

Virtual machines

Instead of targeting a real processor, a compiler can target a
virtual one, usually called a virtual machine (VM).

The produced code is then interpreted by a program
emulating the virtual machine.

26

VMs pros and cons

Virtual machines are interesting for several reasons:

• the compiler can target a single, usually high-level
architecture,

• the program can easily be monitored during execution,
e.g. to prevent malicious behaviour, or provide
debugging facilities,

• the distribution of compiled code is easier.

The main (only?) disadvantage of virtual machines is their
speed: it is always slower to interpret a program in software
than to execute it directly in hardware.

27

Dynamic (JIT) compilation

To make virtual machines faster, dynamic, or just-in-time
(JIT) compilation was invented.

The idea is simple: Instead of interpreting a piece of code,
the virtual machine translates it to machine code, and hands
that code to the processor for execution.

This is usually faster than interpretation.

28

Summary

Compilers for high-level languages are more complex than
the ones you’ve studied, since:

• they must translate high-level concepts like pattern-
matching, anonymous functions, etc. to lower-level
equivalents,

• they must be accompanied by a sophisticated run time
system, and

• they should produced optimised code.

This course will be focused on these aspects of compilers
and run time systems.

29

