
Instruction scheduling

Michel Schinz

Instruction ordering

When a compiler emits the instructions corresponding to a
program, it imposes a total order on them.

However, that order is usually not the only valid one, in the
sense that it can be changed without modifying the
program’s behaviour.

For example, if two instructions i1 and i2 appear
sequentially in that order and are independent, then it is
possible to swap them.

2

Instruction scheduling

Among all the valid permutations of the instructions
composing a program – i.e. those which preserve the
program’s behaviour – some can be more desirable than
others. For example, one order might lead to a faster
program on some machine, because of architectural
constraints.

The aim of instruction scheduling is to find a valid order
that optimises some metric, like execution speed.

3

Pipeline stalls

Modern, pipelined architectures can usually issue at least
one instruction per clock cycle.

However, an instruction can be executed only if the data it
needs is ready. Otherwise, the pipeline stalls for one or
several cycles.

Stalls can appear because some instructions (e.g. division)
require several cycles to complete, or because data has to
be fetched from memory.

4

Scheduling example
The following example will illustrate how proper
scheduling can reduce the time required to execute a piece
of code.

We assume the following delays for instructions:

5

Instruction(s) Delay

LOAD, STOR 3

MUL 2

ADD 1

Scheduling example

6

Cycle Instruction
1 LOAD R1 R30 0

4 ADD R1 R1 R1

5 LOAD R2 R30 4

8 MUL R1 R1 R2

9 LOAD R2 R30 8

12 MUL R1 R1 R2

13 LOAD R2 R30 12

16 MUL R1 R1 R2

18 STOR R1 R30 16

Cycle Instruction
1 LOAD R1 R30 0

2 LOAD R2 R30 4

3 LOAD R3 R30 8

4 ADD R1 R1 R1

5 MUL R1 R1 R2

6 LOAD R2 R30 12

7 MUL R1 R1 R3

9 MUL R1 R1 R2

11 STOR R1 R30 16

After scheduling (including renaming), the last instruction
is issued at cycle 11 instead of 18!

Instruction dependencies

7

An instruction i2 depends on an instruction i1 when it is not
possible to execute i2 before i1 without changing the
behaviour of the program.

The most common reason for dependency is data-
dependency: i2 uses a value that is computed by i1.

However, as we will see, there are other kinds of
dependencies.

Data dependencies

We distinguish three kinds of dependencies between two
instructions i1 and i2:

1. true dependency – i2 reads a value written by i1 (read
after write, RAW),

2. anti-dependency – i2 writes a value read by i1 (write
after read, WAR),

3. anti-dependency – i2 writes a value written by i1 (write
after write, WAW).

8

Anti-dependencies
Anti-dependencies are not real dependencies, in the sense
that they do not arise from the flow of data. They are due to
a single location – e.g. a register – being used to store
different values.

Most of the time, anti-dependencies can be removed by
renaming locations – e.g. registers.

For example, the program on the left contains a WAW anti-
dependency between the two LOAD instructions, that can
be removed by renaming the second use of R1.

9

LOAD R1 R30 0
PINT R1

LOAD R1 R30 4
PINT R1

LOAD R1 R30 0
PINT R1

LOAD R2 R30 4
PINT R2

Computing dependencies

Identifying dependencies among instructions that only
access registers is easy.

Instructions that access memory are harder to handle. In
general, it is not possible to know whether two such
instructions refer to the same memory location.
Conservative approximations therefore have to be used.

10

Dependency graph

The dependency graph is a directed graph representing
dependencies among instructions.

Its nodes are the instructions to schedule, and there is an
edge from node n1 to node n2 iff the instruction of n2
depends on n1.

By topologically sorting the nodes of this graph, it is
possible to compute all possible schedules of a set of
instructions.

11

Dependency graph example

12

Name Instruction

a LOAD R1 R30 0

b ADD R1 R1 R1

c LOAD R2 R30 4

d MUL R1 R1 R2

e LOAD R2 R30 8

f MUL R1 R1 R2

g LOAD R2 R30 12

h MUL R1 R1 R2

i STOR R1 R30 16
true dependency
antidependency

b

d

gf

h

c

e

i

a

Difficulty of scheduling

13

Optimal instruction scheduling is NP-complete.

As always, this implies that we will use techniques based
on heuristics to find a good – but sometimes not optimal –
solution to that problem.

List scheduling is a technique to schedule the instructions
of a single basic block.

Its basic idea is to simulate the execution of the
instructions, and to try to schedule instructions only when
all their operands can be used without stalling the pipeline.

List scheduling algorithm

The list scheduling algorithm maintains two lists:

• ready is the list of instructions that could be scheduled
without stall, ordered by priority,

• active is the list of instructions that are being
executed.

At each step, the highest-priority instruction from ready is
scheduled, and moved to active, where it stays for a time
equal to its delay.

14

Prioritising instructions

Instructions are sorted by priority in the ready list. How are
those priorities computed?

The most common scheme is to use the length of the
longest latency-weighted path from the node to a root of
the dependency graph as the priority.

Other schemes exits, though. For example, a node’s priority
can be the number of its immediate successors.

15

List scheduling example

16

Cycle ready active

1 [a13,c12,e10,g8] [a]

2 [c12,e10,g8] [a,c]

3 [e10,g8] [a,c,e]

4 [b10,g8] [b,c,e]

5 [d9,g8] [d,e]

6 [g8] [d,g]

7 [f7] [f,g]

8 [] [f,g]

9 [h5] [h]

10 [] [h]

11 [i3] [i]

12 [] [i]

13 [] [i]

14 [] []

b10

d9

g8f7

h5

c12

e10

i3

a13
priority

Scheduling conflicts

17

It is hard to decide whether scheduling should be done
before or after register allocation.

If register allocation is done first, it can introduce anti-
dependencies when reusing registers.

If scheduling is done first, register allocation can introduce
spilling code, destroying the schedule.

Solution: schedule first, then allocate registers and schedule
once more if spilling was necessary.

Summary

Instruction scheduling tries to find an order in which
instructions should be issued to improve some metric –
typically execution time.

List scheduling is an instruction scheduling technique. It
works by always scheduling the next instruction that is
ready, i.e. whose operands are available. When several
candidate instructions exist, a heuristic is used to decide
which one to schedule next.

18

