
SSA form

Michel Schinz

SSA form

SSA form

Static single-assignment (or SSA) form is an intermediate
representation in which each variable has only one
definition in the program.

That single definition can be executed many times when
the program is run – if it is inside a loop – hence the
qualifier static.

SSA form is interesting because it simplifies several
optimisations and analysis, as we will see.

3

Straight-line code

4

x←12
y←15
x←x+y
y←x+4
z←x+y
y←y+1

x1←12
y1←15
x2←x1+y1
y2←x2+4
z1←x2+y2
y3←y2+1

to SSA

Transforming a piece of straight-line code – i.e. without
branches – to SSA is trivial: each definition of a given name
gives rise to a new version of that name, identified by a
subscript:

ϕ-functions

5

Join-points in the CFG – nodes with more than one
predecessors – are more problematic, as each predecessor
can bring its own version of a given name.

To reconcile those different versions, a fictional ϕ-function
is introduced at the join point. That function takes as
argument all the versions of the variable to reconcile, and
automatically selects the right one depending on the flow
of control.

ϕ-functions example

6

x←12
y←15
if x<y

y←x
x←x+1

y←x+1

z←x*y

x1←12
y1←15
if x1<y1

y2←x1
x2←x1+1

y3←x1+1

x3=ϕ(x2,x1)
y4=ϕ(y2,y3)
z←x3*y4

to SSA

(Naïve) building of SSA form

7

Naïve technique to build SSA form:

• for each variable x of the CFG, at each join point n,
insert a ϕ-function of the form x=ϕ(x,…,x) with as
many parameters as n has predecessors,

• compute reaching definitions, and use that information
to rename any use of a variable according to the – now
unique – definition reaching it.

(Naïve) building of SSA form

8

CFG
x←1
y←2
z←x+y

y←y-1
x←x+y

y←y+1
x←y

y←x*2
z←z+x

After phase 1
x←1
y←2
z←x+y

y←y-1
x←x+y

y←y+1
x←y

x←ϕ(x,x)
y←ϕ(y,y)
z←ϕ(z,z)
y←x*2
z←z+x

After phase 2
x1←1
y1←2
z1←x1+y1

y2←y1-1
x2←x1+y2

y3←y1+1
x3←y3

x4←ϕ(x2,x3)
y4←ϕ(y2,y3)
z2←ϕ(z1,z1)
y5←x4*2
z3←z2+x4

dead
redundant

Smarter building of SSA form

9

The naïve technique just presented works, in the sense that
the resulting program is in SSA form and is equivalent to
the original one.

However, it introduces too many ϕ-functions – some dead,
some redundant – to be useful in practice. It builds the
maximal SSA form.

We will examine better techniques later, but to understand
them we must first introduce the notion of dominance in a
CFG.

Dominance

Dominance

In a control-flow graph, a node n1 dominates a node n2 if
all paths from the start node to n2 pass through n1.

By definition, the domination relation is reflexive, that is a
node n always dominates itself. We then say that node n1
strictly dominates n2 if n1 dominates n2 and n1 ≠ n2.

The immediate dominator of a node n is the strict
dominator of n closest to n.

11

Dominance examples

12

CFG

0

1

2 3

4 5

6

7

Dominance

Node Dominators

0 { 0 }

1 { 0, 1 }

2 { 0, 1, 2 }

3 { 0, 1, 3 }

4 { 0, 1, 3, 4 }

5 { 0, 1, 3, 5 }

6 { 0, 1, 3, 6 }

7 { 0, 1, 7 }

Dominator tree

13

The dominator tree is a tree representing the dominance
relation.

The nodes of the tree are the nodes of the CFG, and a node
n1 is a parent of a node n2 if and only if n1 is the immediate
dominator of n2.

Dominator tree example

14

CFG

0

1

2 3

4 5

6

7

Dominator tree

0

1

2 3

4 5

6

7

Computing dominance

15

Dominance can be computed using data-flow analysis.

To each node n of the CFG we attach a variable vn giving
the set of nodes that dominate n. The value of vn is given by
the following equation:

vn = { n } ∪ (vp1 ∩ vp2 ∩ … ∩ vpk)

where p1, …, pk are the predecessors of n.

Dominance frontier

The dominance frontier of a node n – written
DF(n) – is the set of all nodes m such that n dominates a
predecessor of m, but does not strictly dominates m itself.

Informally, the dominance frontier of n contains the first
nodes which are reachable from n but which are not strictly
dominated by n.

16

Dominance frontier example

17

Dominance frontierCFG

0

1

2 3

4 5

6

7 7

6

54

32

1

0

dominance
frontier of 3={7}

nodes
dominated by 3

Building SSA form

Minimal SSA form

The naïve technique to build SSA form presented earlier
inserts ϕ-functions for every variable at the beginning of
every join point.

Using dominance information, it is possible to do better,
and compute minimal SSA form: for each definition of a
variable x in a node n, insert a ϕ-function for x in all nodes
of DF(n).

Notice that the inserted ϕ-functions are definitions, and
can therefore force the insertion of more ϕ-functions.

19

Improving on minimal SSA

The naïve technique to build SSA form presented at the
beginning computes maximal SSA form.

The better technique just presented computes minimal SSA
form.

Unfortunately, minimal SSA form is not necessarily optimal,
and can contain dead ϕ-functions. To solve that problem,
improved techniques have been developed to build semi-
pruned – which is still not optimal – and pruned SSA form.

20

Semi-pruned SSA form

Observation: a variable that is only live in a single node
can never have a live ϕ-function.

Therefore, the minimal technique can be further refined by
first computing the set of global names – defined as the
names that are live across more than one node – and
producing ϕ-functions for these names only.

This is called semi-pruned SSA form.

21

Building semi-pruned SSA form

Like the naïve technique to build maximal SSA form, the
algorithm to build semi-pruned SSA form is composed of
two phases:

1. ϕ-functions are inserted for global names, according
to dominance information,

2. variables are renamed.

22

Phase 1: inserting ϕ-functions

Before inserting ϕ-functions, the set G of global names
must be computed. Once this is done, insertion of ϕ-
functions is done as follows:

for each name x in G
 work list ← all nodes in which x is defined
 for each node n in work list
 for each node m in DF(n)
 insert a ϕ-function for x in m
 work list ← work list ∪ { m }

23

Phase 2: renaming variables

Renaming is done by a pre-order traversal of the dominator
tree.

For each visited node n, the following is done:

• definitions and uses of variables occurring in n are
renamed,

• the parameter corresponding to n in all ϕ-functions of
all successors of n in the CFG is renamed.

24

Example
(see blackboard)

Generating code from
SSA form

Generating code from SSA

After the program has been turned into SSA form and the
various optimisations performed on that representation, it
must be transformed into executable form.

This implies in particular that ϕ-functions must be
removed, as they cannot be implemented on standard
machines.

27

Removing ϕ-functions

A ϕ-function of the form xi←ϕ(x1,…,xn) can be removed by
inserting appropriate assignments to xi in all predecessors of
the node containing that function.

This will introduce many assignments of the form xi←xj
(that is, move instructions), but most of them will be
removed later during register allocation, thanks to
coalescing.

28

Removing ϕ-functions

29

x1←12
y1←15
if x1<a1

y2←x1
x2←x1+1

y3←x1+1

x3=ϕ(x2,x1)
y4=ϕ(y2,y3)
z←x3*y4

x1←12
y1←15
if x1<a1

y2←x1
x2←x1+1
x3←x2
y4←y2

y3←x1+1
x3←x1
y4←y3

z←x3*y4

ϕ-function
removal

Critical edges

30

CFG edges that go from a node with multiple successors to
a node with multiple predecessors are called critical edges.

While removing ϕ-functions, the presence of a critical edge
from n1 to n2 leads to the insertion of redundant move
instructions in n1, corresponding to the ϕ-functions of n2.
Ideally, they should be executed only if control reaches n2
later, but this is not certain when n1 executes.

Edge splitting

Critical edges can easily be avoided completely using edge
splitting.

Edge splitting consists in replacing all critical edges leading
from a node n1 to a node n2 by two edges: one from n1 to a
new empty node n3, and one from n3 to n2.

Since the new empty block n3 has only one predecessor
and one successor, this effectively removes the critical
edge.

31

Without edge splitting

32

x1←12
y1←15
if x1<y1

y2←x1
x2←x1+1

x3=ϕ(x2,x1)
y3=ϕ(y2,y1)
z←x3*y3

ϕ-function
removal

x1←12
y1←15
x3←x1
y3←y1
if x1<y1

y2←x1
x2←x1+1
x3←x2
y3←y2

z←x3*y3

potentially
redundantcritical

edge

With edge splitting

33

x1←12
y1←15
if x1<y1

y2←x1
x2←x1+1

x3=ϕ(x2,x1)
y3=ϕ(y2,y1)
z←x3*y3

ϕ-function
removal

x1←12
y1←15
if x1<y1

y2←x1
x2←x1+1
x3←x2
y3←y2

x3←x1
y3←y1

z←x3*y3

Using SSA form

Dead-code elimination

Basic dead-code elimination is trivial in SSA form: if a
variable xi is not used in some expression, then its
definition – of the form xi←yj op zk or xi←ϕ(xj, …, xk) – can
be deleted. Of course, this is only true if that definition
does not have side-effects.

The deletion of a definition can remove the last use of some
other variable, in which case its definition can be deleted
too, and so on…

35

Simple constant propagation

SSA form also simplifies constant propagation: whenever a
definition of the form xi←c – where c is a constant – is
encountered, then all uses of xi can be replaced by c.
Moreover, the definition itself can be deleted from the
program, as it is now dead.

Also, a ϕ-function of the form xi←ϕ(c1,…,cn) where
c1=…=cn can be replaced by xi←c1, which is then
simplified as above.

36

Copy propagation

Copy propagation can be handled in a similar fashion as
constant propagation: definitions of the form xi←yj, and
single-argument ϕ-functions of the form xi←ϕ(yj) can be
deleted, and all uses of xi replaced by uses of yj.

The same is true of constant folding: a definition of the form
xi←c1 op c2 – where c1 and c2 are constants – can be
deleted and all uses of xi replaced by the value of c1 op c2.

37

Liveness analysis

SSA form also simplifies liveness analysis, and hence the
construction of the interference graph needed by register
allocation.

To compute the region where a variable xi is live in SSA
form, it is sufficient to start from all uses of xi and walk
backwards in the CFG until the definition of xi is
encountered. The statements encountered during that walk
are those during which xi is live.

38

Summary

Static single-assignment (SSA) form is an intermediate
representation where all names are defined exactly once.
To enable this, ϕ-functions have to be inserted at join
points in the CFG.

Transforming a program to SSA form is not completely
trivial since unnecessary ϕ-functions should be avoided.

SSA encodes the data-flow of the program in its names,
making several optimisations easier.

39

