Data-flow analysis

Michel Schinz – based on material by Erik Stenman and Michael Schwartzbach

Introduction to data-flow analysis

Data-flow analysis

Data-flow analysis is a global analysis framework that can be used to compute – or, more precisely, approximate – various properties of programs.

The results of those analysis can be used to perform several optimisations, for example:

- common sub-expression elimination,
- dead-code elimination,
- constant propagation,
- register allocation,
- etc.

Example: liveness

A variable is said to be **live** at a given point if its value will be read later. While liveness is clearly undecidable, a conservative approximation can be computed using dataflow analysis.

This approximation can then be used, for example, to allocate registers: a set of variables that are never live at the same time can share a single register.

Requirements

Data-flow analysis requires the program to be represented as a control flow graph (CFG).

To compute properties about the program, it assigns values to the nodes of the CFG. Those values must be related to each other by a special kind of partial order called a lattice. We therefore start by introducing control flow graphs and lattice theory.

Control-flow graphs

Control-flow graph

A **control flow graph** (**CFG**) is a graphical representation of a program.

The nodes of the CFG are the statements of that program. The edges of the CFG represent the flow of control: there is an edge from n_1 to n_2 if and only if control can flow immediately from n_1 to n_2 . That is, if the statements of n_1 and n_2 can be executed in direct succession.

Predecessors and successors In the CFG, the set of the immediate predecessors of a node n is written pred(n). Similarly, the set of the immediate successors of a node n is written succ(n).

A **partial order** is a mathematical structure (S, \sqsubseteq) composed of a set *S* and a binary relation \sqsubseteq on *S*, satisfying the following conditions:

- 1. reflexivity: $\forall x \in S, x \sqsubseteq x$
- 2. transitivity: $\forall x, y, z \in S, x \sqsubseteq y \land y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- 3. anti-symmetry: $\forall x, y \in S, x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$

13

Partial order example

In Java, the set of types along with the subtyping relation form a partial order. According to that order, the type String is smaller (*i.e.* a subtype) of the type Object. The type String and Integer are not comparable: none of them is a subtype of the other.

14

Upper bound

Given a partial order (S, E) and a set $X \subseteq S$, $y \in S$ is an **upper bound** for X, written $X \equiv y$, if $\forall x \in X, x \equiv y$.

A **least upper bound** (**lub**) for *X*, written $\sqcup X$, is defined by: $X \sqsubseteq \sqcup X \land \forall y \in S, X \sqsubseteq y \Rightarrow \sqcup X \sqsubseteq y$ Notice that a least upper bound does not always exist.

15

Lower bound

Given a partial order (S, \sqsubseteq) and a set $X \subseteq S$, $y \in S$ is a **lower bound** for X, written $y \sqsubseteq X$, if $\forall x \in X, y \sqsubseteq x$.

A **greatest lower bound** for *X*, written $\sqcap X$, is defined by: $\sqcap X \sqsubseteq X \land \forall y \in S, y \sqsubseteq X \Rightarrow y \sqsubseteq \sqcap X$ Notice that a greatest lower bound does not always exist.

16

Lattice

A **lattice** is a partial order $L = (S, \sqsubseteq)$ for which $\sqcup X$ and $\sqcap X$ exist for all $X \subseteq S$.

A lattice has a unique greatest element, written \top and

pronounced "**top**", defined as $\top = \sqcup S$. It also has a unique smallest element, written \bot and

pronounced "**bottom**", defined as $\perp = \sqcap S$.

The height of a lattice is the length of the longest path from \bot to \top .

17

Finite partial orders

A partial order (S, E) is **finite** if the set *S* contains a finite number of elements.

For such partial orders, the lattice requirements reduce to the following:

- \top and \perp exist,
- every pair of elements x, y in S has a least upper bound – written x ⊔ y – as well as a greatest lower bound – written x ⊓ y.

Cover relation

In a partial order (*S*, ε), we say that an element *y* **covers** another element *x* if: $(x \subset y) \land (\forall z \in S, x \subseteq z \subset y \Rightarrow x = z)$

where $x \vdash y \Leftrightarrow x \vdash y \land x \neq y$. Intuitively, *y* covers *x* if *y* is the smallest element greater than *x*.

19

Hasse diagram A partial order can be represented graphically by a Hasse diagram. In such a diagram, the elements of the set are represented by dots. If an element y covers an element x, then the dot of y is placed above the dot of x, and a line is drawn to connect the two dots.

Monotone function

A function $f : L \to L$ is **monotone** if and only if: $\forall x, y \in S, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$ This does *not* imply that *f* is increasing, as constant functions are also monotone. Viewed as functions, \sqcap and \sqcup are monotone in both arguments.

Fixed point theorem

Definition: a value v is a **fixed point** of a function f if and only if f(v) = v.

Fixed point theorem: In a lattice L with finite height, every monotone function f has a unique least fixed point fix(f), and it is given by:

25

 $\mathsf{fix}(f) = \bot \mathrel{\sqcup} f(\bot) \mathrel{\sqcup} f^2(\bot) \mathrel{\sqcup} f^3(\bot) \mathrel{\sqcup} \ldots$

Fixed points and equations Fixed points are interesting as they enable us to solve systems of equations of the following form: $x_1 = F_1(x_1, ..., x_n)$ $x_2 = F_2(x_1, ..., x_n)$

..., $x_n = F_n(x_1, ..., x_n)$ where $x_1, ..., x_n$ are variables, and $F_1, ..., F_n : L^n \rightarrow L$ are monotone functions. Such a system has a unique least solution that is the least

fixed point of the composite function $F : L^n \to L^n$ defined as: $F(x_1, ..., x_n) = (F_1(x_1, ..., x_n), ..., F_n(x_1, ..., x_n))$

26

Fixed points and inequations systems of inequations of the following form: $x_1 \subseteq F_1(x_1, ..., x_n)$ $x_2 \subseteq F_2(x_1, ..., x_n)$ \dots $x_n \subseteq F_n(x_1, ..., x_n)$ can be solved similarly by observing that $x \subseteq y \Leftrightarrow x = x \sqcap y$ and rewriting the inequations.

Data-flow analysis

Data-flow analysis works on a control-flow graph and a lattice L. The lattice can either be fixed for all programs, or depend on the analysed one. A variable v_n ranging over the values of L is attached to every node n of the CFG.

Overview

A set of (in)equations for these variables are then extracted from the CFG – according to the analysis being performed – and solved using the fixed point technique.

29

Example: liveness

As we have seen, liveness is a property that can be approximated using data-flow analysis. The lattice to use in that case is $L = \{ P(V), \subseteq \}$ where *V* is the set of variables appearing in the analysed program, and P is the power set operator (set of all subsets).

Exam	ple: livenes	5
CFG	constraints	solution
$1 \times -read-int$ $2 \times -read-int$ $3 if (x < y)$ $4 z \leftarrow x 5 z \leftarrow y$ $6 print-int z$	$v_{1} = v_{2} \setminus \{ x \}$ $v_{2} = v_{3} \setminus \{ y \}$ $v_{3} = v_{4} \cup v_{5} \cup \{ x, y \}$ $v_{4} = v_{6} \cup \{ x \} \setminus \{ z \}$ $v_{5} = v_{6} \cup \{ y \} \setminus \{ z \}$ $v_{6} = \{ z \}$, , ,
	33	

Fixed point algorithm									
To solve the data-flow constraints, we construct the composite function <i>F</i> and compute its least fixed point by iteration. $F(x_1, x_2, x_3, x_4, x_5, x_6) = (x_2 \setminus \{x\}, x_3 \setminus \{y\}, x_4 \cup x_5 \cup \{x\}, x_6 \cup \{x\} \setminus \{z\}, x_6 \cup \{y\} \setminus \{z\}, \{z\})$									
Iteration	X1	X2	X3	X4	X 5	X6			
0	{ }	{ }	{}	{ }	{ }	{ }			
1	{ }	{ }	{ x, y }	{ x }	{ y }	{ z }			
2	{ }	{ x }	{ x, y }	{ x }	{ y }	{ z }			
3	11	{ x }	{ x, y }	{ x }	{ v }	{ z }			

Work-list example: liveness

q	X1	X2	X3	X4	X5	X6
[V1,V2,V3,V4,V5,V6]	{}	{}	- {}	8	8	- 8
[v ₂ , v ₃ , v ₄ , v ₅ , v ₆]	{}	{}	- {}	8	{}	- {}
[V3,V4,V5,V6]	{}	{}	{}	{}	{}	- {}
[V4,V5,V6,V2]	{}	{}	{x,y}	8	{}	- {}
[V5,V6,V2,V3]	{}	{}	{x,y}	{x}	{}	- {}
[V6,V2,V3,V3]	{}	{}	{x,y}	{x}	{y}	- {}
[V2,V3,V4,V5]	{}	{}	{x,y}	{x}	{y}	{z}
[V3,V4,V5,V1]	{}	{x}	{x,y}	{x}	{ y }	{z}
[V4,V5,V1]	{}	{x}	{x,y}	{x}	{ y }	{z}
[V5,V1]	{}	{x}	{x,y}	{x}	{ y }	{z}
[V1]	{}	{x}	{x,y}	{x}	{y}	{z}
0	{}	{x}	{x,y}	{x}	{ y }	{z}

Analysis example #2: available expressions

Intuitions

We will compute the set of expressions available *after* every node of the CFG.

- Intuitively, an expression e is available after some node n if:
- it is available after all predecessors of *n*, or
- it is defined by *n* itself, and not killed by *n*.

A node *n* **kills** an expression e if it gives a new value to a variable used by e. For example, the assignment $x \leftarrow y$ kills all expressions that use x, like x+1.

43

Equations

To approximate available expressions, we attach to every node n of the CFG a variable v_n containing the set of expressions available after it.

Then we derive constraints from the CFG nodes, which have the form:

 $v_n = (v_{p1} \cap v_{p2} \cap \dots \setminus \mathsf{kill}(n)) \cup \mathsf{gen}(n)$

where gen(n) is the set of expressions computed by n, and kill(n) the set of expressions killed by n.

44

Intuitions

We will compute the set of very busy expressions *before* every node of the CFG.

Intuitively, an expression e is very busy before node n if it is evaluated by n, or if it is very busy in all successors of n, and it is not killed by n.

Analysis example #4: reaching definitions

Reaching definitions

The **reaching definitions** for a program point are the assignments that may have defined the values of variables at that point.

Data-flow analysis can approximate the set of reaching definitions for all program points. These sets can then be used to perform constant propagation, for example.

52

Intuitions

We will compute the set of reaching definitions *after* every node of the CFG. This set will be represented as a set of CFG node identifiers.

Intuitively, the reaching definitions after a node n are all the reaching definitions of the predecessors of n, minus those that define a variable defined by n itself, plus n itself.

53

Equations

To approximate reaching definitions, we attach to node n of the CFG a variable v_n containing the set of definitions (CFG nodes) that can reach n.

For a node n that is not an assignment, the reaching definitions are simply those of its predecessors:

 $v_n = (v_{p1} \cup v_{p2} \cup \ldots)$

For a node *n* that is an assignment, the equation is more complicated:

 $v_n = (v_{p1} \cup v_{p2} \cup \ldots) \setminus \mathsf{kill}(n) \cup \{n\}$

where kill(*n*) are the definitions killed by *n*, *i.e.* those which define the same variable as *n* itself. For example, a definition like $x \leftarrow y$ kills all expressions of the form $x \leftarrow ...$

Dead-code elimination

Useless assignments can be eliminated using liveness analysis, as follows:

Whenever a CFG node *n* is of the form $x \leftarrow e$, and x is not live after *n*, then the assignment is useless and node *n* can be removed.

58

Constant propagation

Constant propagation can be performed using the result of reaching definitions analysis, as follows:

60

When a CFG node *n* uses a value x and the only definition of x reaching *n* has the form $x \leftarrow c$ where c is a constant, then the use of x in n can be replaced by c.

CSE

Common sub-expressions can be eliminated using availability information, as follows:

Whenever a CFG node n computes an expression of the form x op y and x op y is available before n, then the computation within n can be replaced by a reference to the previously-computed value.

Copy propagation

Copy propagation – very similar to constant propagation – can be performed using the result of reaching definitions analysis, as follows:

When a CFG node *n* uses a value x, and the only definition of x reaching *n* has the form $x \leftarrow y$ where y is a variable, and y is not redefined on any path leading to *n*, then the use of x in *n* can be replaced by y.