
Data-flow analysis

Michel Schinz – based on material by Erik Stenman
and Michael Schwartzbach

Introduction to
data-flow analysis

Data-flow analysis

Data-flow analysis is a global analysis framework that can
be used to compute – or, more precisely, approximate –
various properties of programs.

The results of those analysis can be used to perform several
optimisations, for example:

• common sub-expression elimination,

• dead-code elimination,

• constant propagation,

• register allocation,

• etc.

3

Example: liveness

A variable is said to be live at a given point if its value will
be read later. While liveness is clearly undecidable, a
conservative approximation can be computed using data-
flow analysis.

This approximation can then be used, for example, to
allocate registers: a set of variables that are never live at the
same time can share a single register.

4

Requirements

Data-flow analysis requires the program to be represented
as a control flow graph (CFG).

To compute properties about the program, it assigns values
to the nodes of the CFG. Those values must be related to
each other by a special kind of partial order called a lattice.

We therefore start by introducing control flow graphs and
lattice theory.

5

Control-flow graphs

Control-flow graph

A control flow graph (CFG) is a graphical representation of
a program.

The nodes of the CFG are the statements of that program.

The edges of the CFG represent the flow of control: there is
an edge from n1 to n2 if and only if control can flow
immediately from n1 to n2. That is, if the statements of n1
and n2 can be executed in direct succession.

7

CFG example

8

x!12

y!5

if x<y

x!y x!2*y

z!x/y

Predecessors and successors

9

In the CFG, the set of the immediate predecessors of a node
n is written pred(n).

Similarly, the set of the immediate successors of a node n is
written succ(n).

Basic block

A basic block is a maximal sequence of statements for
which control flow is purely linear.

That is, control always enters a basic block from the top –
its first instruction – and leaves from the bottom – its last
instruction.

Basic blocks are often used as the nodes of a CFG, in order
to reduce its size.

10

CFG example (basic blocks)

11

x!12

y!5

if x<y

x!y x!2*y

z!x/y

Lattice theory

Partial order

A partial order is a mathematical structure (S,!)composed

of a set S and a binary relation ! on S, satisfying the

following conditions:

1. reflexivity: ∀x ∈ S, x ! x

2. transitivity: ∀x,y,z ∈ S, x ! y $ y ! z ⇒ x ! z

3. anti-symmetry: ∀x,y ∈ S, x ! y $ y ! x ⇒ x = y

13

Partial order example

In Java, the set of types along with the subtyping relation
form a partial order.

According to that order, the type String is smaller (i.e. a
subtype) of the type Object.

The type String and Integer are not comparable: none
of them is a subtype of the other.

14

Upper bound

Given a partial order (S,!) and a set X ⊆ S, y ∈ S is an

upper bound for X, written X ! y, if

∀x ∈ X, x ! y.

A least upper bound (lub) for X, written "X, is defined by:

X ! "X $ ∀y ∈ S, X ! y ⇒ "X ! y

Notice that a least upper bound does not always exist.

15

Lower bound

Given a partial order (S, !) and a set X ⊆ S, y ∈ S is a lower

bound for X, written y ! X, if

∀x ∈ X, y ! x.

A greatest lower bound for X, written #X, is defined by:

#X ! X $ ∀y ∈ S, y ! X ⇒ y ! #X

Notice that a greatest lower bound does not always exist.

16

Lattice

A lattice is a partial order L = (S,!) for which "X and #X

exist for all X ⊆ S.

A lattice has a unique greatest element, written ! and

pronounced “top”, defined as != "S.

It also has a unique smallest element, written ⊥ and

pronounced “bottom”, defined as ⊥ = #S.

The height of a lattice is the length of the longest path from
⊥ to !.

17

Finite partial orders

A partial order (S,!) is finite if the set S contains a finite

number of elements.

For such partial orders, the lattice requirements reduce to
the following:

• ! and ⊥ exist,

• every pair of elements x,y in S has a least upper bound
– written x " y – as well as a greatest lower bound –

written x # y.

18

Cover relation

In a partial order (S,!), we say that an element y covers

another element x if:

(x % y) ∧ (∀z ∈ S, x ! z % y ⇒ x = z)

where x % y ⇔ x ! y ∧ x ! y.

Intuitively, y covers x if y is the smallest element greater
than x.

19

Hasse diagram

A partial order can be represented graphically by a Hasse
diagram.

In such a diagram, the elements of the set are represented
by dots.

If an element y covers an element x, then the dot of y is
placed above the dot of x, and a line is drawn to connect
the two dots.

20

Hasse diagram example

21

7 (111)

0 (000)

1 (001) 4 (100)
2 (010)

3 (011) 6 (110)
5 (101)

Hasse diagram for the partial order (S,!) where

S = { 0, 1, …, 7 } and x ! y ⇔ (x & y) = x

bitwise and

Partial order examples

22

Which of the following partial orders are lattices?

1 2 3

4 5 6

Fixed points

Monotone function

A function f : L " L is monotone if and only if:

∀x,y ∈ S, x ! y ⇒ f(x) ! f(y)

This does not imply that f is increasing, as constant
functions are also monotone.

Viewed as functions, # and " are monotone in both

arguments.

24

Fixed point theorem

Definition: a value v is a fixed point of a function f if and
only if f(v) = v.

Fixed point theorem: In a lattice L with finite height, every
monotone function f has a unique least fixed point fix(f),
and it is given by:

fix(f) = ⊥ " f(⊥) " f2(⊥) " f3(⊥) " …

25

Fixed points and equations

Fixed points are interesting as they enable us to solve
systems of equations of the following form:

x1 = F1(x1, …, xn)
x2 = F2(x1, …, xn)
…
xn = Fn(x1, …, xn)

where x1, ..., xn are variables, and F1, ..., Fn : Ln " L are
monotone functions.

Such a system has a unique least solution that is the least
fixed point of the composite function F : Ln " Ln defined as:

F(x1, …, xn) = (F1(x1, …, xn), …, Fn(x1, …, xn))

26

Fixed points and inequations

Systems of inequations of the following form:

x1 ! F1(x1, …, xn)

x2 ! F2(x1, …, xn)

…
xn ! Fn(x1, …, xn)

can be solved similarly by observing that
x ! y ⇔ x = x # y and rewriting the inequations.

27

Data-flow analysis

Overview

Data-flow analysis works on a control-flow graph and a
lattice L. The lattice can either be fixed for all programs, or
depend on the analysed one.

A variable vn ranging over the values of L is attached to
every node n of the CFG.

A set of (in)equations for these variables are then extracted
from the CFG – according to the analysis being performed
– and solved using the fixed point technique.

29

Example: liveness

As we have seen, liveness is a property that can be
approximated using data-flow analysis.

The lattice to use in that case is L = { P(V), } where V is
the set of variables appearing in the analysed program, and
P is the power set operator (set of all subsets).

30

⊆

Example: liveness

31

{}

{x} {y} {z}

{x,y} {x,z} {y,z}

{x,y,z}

For a program containing three variables x, y and z, the
lattice for liveness is the following:

Example: liveness

32

To every node n in the CFG, we attach a variable vn giving
the set of variables live before that node.

The value of that variable is given by:

vn = (vs1 & vs2 & … \ written(n)) & read(n)

where s1, s2, … are the successors of n, read(n) is the set of
program variables read by n, and written(n) is the set of
variables written by n.

Example: liveness

33

CFG constraints solution

x!read-int

y!read-int

if (x < y)

z!x z!y

print-int z

1

2

3

4 5

6

v1 = v2 \ { x }
v2 = v3 \ { y }
v3 = v4 ∪ v5 ∪ { x, y }

v4 = v6 ∪ { x } \ { z }

v5 = v6 ∪ { y } \ { z }

v6 = { z }

v1 = { }
v2 = { x }
v3 = { x, y }
v4 = { x }
v5 = { y }
v6 = { z }

Fixed point algorithm

34

To solve the data-flow constraints, we construct the
composite function F and compute its least fixed point by
iteration.

F(x1, x2, x3, x4, x5, x6) =
 (x2\{x}, x3\{y}, x4&x5&{x,y}, x6&{x}\{z}, x6&{y}\{z}, {z})

Iteration x1 x2 x3 x4 x5 x6

0 {"} {"} {"} {"} {"} {"}

1 { } { } { x, y } { x } { y } { z }

2 { } { x"} { x, y } { x } { y } { z }

3 { } { x"} { x, y } { x } { y } { z }

Work-list algorithm

35

Computing the fixed point by simple iteration as we did
works, but is wasteful as the information for all nodes is re-
computed at every iteration.

It is possible to do better by remembering, for every
variable v, the set dep(v) of the variables whose value
depends on the value of v itself.

Then, whenever the value of some variable v changes, we
only re-compute the value of the variables that belong to
dep(v).

Work-list algorithm

36

x1 = x2 = … = xn = ⊥
q = [v1, …, vn]
while (q ! [])

assume q = [vi, …]
y = Fi (x1, …, xn)
q = q.tail
if (y ! xi)

for (v ∈ dep(vi))
if (v ∉ q) q.append(v)

xi = y

Work-list example: liveness

37

q x1 x2 x3 x4 x5 x6

[v1,v2,v3,v4,v5,v6] {} {} {} {} {} {}

[v2,v3,v4,v5,v6] {} {} {} {} {} {}

[v3,v4,v5,v6] {} {} {} {} {} {}

[v4,v5,v6,v2] {} {} {x,y} {} {} {}

[v5,v6,v2,v3] {} {} {x,y} {x} {} {}

[v6,v2,v3,v3] {} {} {x,y} {x} {y} {}

[v2,v3,v4,v5] {} {} {x,y} {x} {y} {z}

[v3,v4,v5,v1] {} {x} {x,y} {x} {y} {z}

[v4,v5,v1] {} {x} {x,y} {x} {y} {z}

[v5,v1] {} {x} {x,y} {x} {y} {z}

[v1] {} {x} {x,y} {x} {y} {z}

[] {} {x} {x,y} {x} {y} {z}

Work-list improvements

38

In our liveness example, the work-list algorithm would have
terminated in only six iterations if the initial queue had
been reversed!

This is due to the fact that liveness analysis is a backward
analysis: the value of variable vn depends on the successors
of n. For such analysis, it is better to organise the queue
with the latest nodes first.

Working with basic blocks

Until now, we considered that the CFG nodes were single
instructions. In practice, basic blocks tend to be used as
nodes, to reduce the size of the CFG.

When data-flow analysis is performed on a CFG composed
of basic blocks, a variable is attached to every block, not to
every instruction. Computing the result of the analysis for
individual instructions is however trivial.

39

Liveness example revisited

40

CFG constraints solution

x!read-int

y!read-int

if (x < y)

z!x z!y

print-int z

1

2 3

4

v1 = v2 ∪ v3 \ { x, y }

v2 = v4 ∪ { x } \ { z }

v3 = v4 ∪ { y } \ { z }

v4 = { z }

v1 = { }
v2 = { x }
v3 = { y }
v4 = { z }

Analysis example #2:
available expressions

Available expressions

A non-trivial expression in a program is available at some
point if its value has already been computed earlier.

Data-flow analysis can be used to approximate the set of
expressions available at all program points. The result from
that analysis can then be used to eliminate common sub-
expressions, for example.

42

Intuitions

We will compute the set of expressions available after every
node of the CFG.

Intuitively, an expression e is available after some node n if:

• it is available after all predecessors of n, or

• it is defined by n itself, and not killed by n.

A node n kills an expression e if it gives a new value to a
variable used by e. For example, the assignment x!y kills
all expressions that use x, like x+1.

43

Equations

To approximate available expressions, we attach to every
node n of the CFG a variable vn containing the set of
expressions available after it.

Then we derive constraints from the CFG nodes, which
have the form:

vn = (vp1 ∩ vp2 ∩ … \ kill(n)) ∪ gen(n)

where gen(n) is the set of expressions computed by n, and
kill(n) the set of expressions killed by n.

44

Example

45

constraints

v1={a<b}
v2={a+b}∪(v1#x)

v3={d+e}∪(v1#x)

v4={x+1}∪(v2#y)

v5={a+b}∪(v3#y)

v6={a+b}∪(v4∩v5)#z

v7={x+1}∪v5#t

CFG

x!a+b

y!x+1 y!a+b

x!d+e

z!a+b

if a<b

t!x+1

1

2 3

4 5

6

7

solution

v1={a<b}
v2={a+b, a<b}
v3={d+e, a<b}
v4={x+1, a+b, a<b}
v5={a+b, d+e, a<b}
v6={a+b, a<b}
v7={x+1, a+b, a<b}

Notation:
S#x = S \ all expressions using variable x.

vn=set of expressions live after node n.

Analysis example #3:
very busy expressions

Very busy expressions

An expression is very busy at some program point if it will
definitely be evaluated before its value changes.

Data-flow analysis can approximate the set of very busy
expressions for all program points. The result of that
analysis can then be used to perform code hoisting: the
computation of a very busy expression e can be performed
at the earliest point where it is busy.

47

Intuitions

We will compute the set of very busy expressions before
every node of the CFG.

Intuitively, an expression e is very busy before node n if it is
evaluated by n, or if it is very busy in all successors of n,
and it is not killed by n.

48

Equations

To approximate very busy expressions, we attach to each
node n of the CFG a variable vn containing the set of
expressions that are very busy before it.

Then we derive constraints from the CFG nodes, which
have the form:

vn = (vs1 ∩ vs2 ∩ … \ kill(n)) ∪ gen(n)

where gen(n) is the set of expressions computed by n, and
kill(n) the set of expressions killed by n.

49

Example

50

CFG

y!a+b

x!1001

2

3

4

5

x!x-1

if x>0

print y

constraints

v1=v2#x
v2={a+b}∪v3#y

v3={x-1}∪v4#x

v4={x>0}∪(v5∩v2)

v5={}

solution

v1={a+b}
v2={a+b,x-1}
v3={x-1}
v4={x>0}
v5={}

Notation:
S#x = S \ all expressions using variable x.

vn=set of expressions very busy before node n.

Analysis example #4:
reaching definitions

Reaching definitions

The reaching definitions for a program point are the
assignments that may have defined the values of variables
at that point.

Data-flow analysis can approximate the set of reaching
definitions for all program points. These sets can then be
used to perform constant propagation, for example.

52

Intuitions

We will compute the set of reaching definitions after every
node of the CFG. This set will be represented as a set of
CFG node identifiers.

Intuitively, the reaching definitions after a node n are all the
reaching definitions of the predecessors of n, minus those
that define a variable defined by n itself, plus n itself.

53

Equations

To approximate reaching definitions, we attach to node n of
the CFG a variable vn containing the set of definitions (CFG
nodes) that can reach n.

For a node n that is not an assignment, the reaching
definitions are simply those of its predecessors:

vn = (vp1 ∪ vp2 ∪ …)

For a node n that is an assignment, the equation is more
complicated:

vn = (vp1 ∪ vp2 ∪ …) \ kill(n) ∪ { n }

where kill(n) are the definitions killed by n, i.e. those which
define the same variable as n itself. For example, a
definition like x!y kills all expressions of the form x!…

54

Example

55

CFG

z!0

x!1001

2

3

4

5

z!z+3

x!x-1

if x>0

print z6

constraints

v1={1}
v2=v1#z ∪ {2}

v3=(v2∪v5)#z ∪ {3}

v4=v3#x ∪ {4}

v5=v4

v6=v5

solution

v1={1}
v2={1,2}
v3={1,3,4}
v4={3,4}
v5={3,4}
v6={3,4}

Notation:
S#x = S \ all nodes defining variable x.

vn=set of reaching definitions after node n.

Putting data-flow
analyses to work

Using data-flow analysis

Once a particular data-flow analysis has been conducted,
its result can be used to optimise the analysed program.

We will quickly examine some transformations that can be
performed using the data-flow analysis presented before.

57

Dead-code elimination

Useless assignments can be eliminated using liveness
analysis, as follows:

Whenever a CFG node n is of the form x!e, and x is
not live after n, then the assignment is useless and node
n can be removed.

58

CSE

Common sub-expressions can be eliminated using
availability information, as follows:

Whenever a CFG node n computes an expression of the
form x op y and x op y is available before n, then the
computation within n can be replaced by a reference to
the previously-computed value.

59

Constant propagation

Constant propagation can be performed using the result of
reaching definitions analysis, as follows:

When a CFG node n uses a value x and the only
definition of x reaching n has the form x!c where c is a
constant, then the use of x in n can be replaced by c.

60

Copy propagation

Copy propagation – very similar to constant propagation –
can be performed using the result of reaching definitions
analysis, as follows:

When a CFG node n uses a value x, and the only
definition of x reaching n has the form x!y where y is a
variable, and y is not redefined on any path leading to n,
then the use of x in n can be replaced by y.

61

