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Introduction to
data-flow analysis

Data-flow analysis

Data-flow analysis is a global analysis framework that can 
be used to compute – or, more precisely, approximate – 
various properties of programs.

The results of those analysis can be used to perform several 
optimisations, for example:

• common sub-expression elimination,

• dead-code elimination,

• constant propagation,

• register allocation,

• etc.
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Example: liveness

A variable is said to be live at a given point if its value will 
be read later. While liveness is clearly undecidable, a 
conservative approximation can be computed using data-
flow analysis.

This approximation can then be used, for example, to 
allocate registers: a set of variables that are never live at the 
same time can share a single register.
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Requirements

Data-flow analysis requires the program to be represented 
as a control flow graph (CFG).

To compute properties about the program, it assigns values 
to the nodes of the CFG. Those values must be related to 
each other by a special kind of partial order called a lattice.

We therefore start by introducing control flow graphs and 
lattice theory.
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Control-flow graphs



Control-flow graph

A control flow graph (CFG) is a graphical representation of 
a program.

The nodes of the CFG are the statements of that program.

The edges of the CFG represent the flow of control: there is 
an edge from n1 to n2 if and only if control can flow 
immediately from n1 to n2. That is, if the statements of n1 
and n2 can be executed in direct succession.
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CFG example
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x!12

y!5

if x<y

x!y x!2*y

z!x/y

Predecessors and successors
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In the CFG, the set of the immediate predecessors of a node 
n is written pred(n).

Similarly, the set of the immediate successors of a node n is 
written succ(n).

Basic block

A basic block is a maximal sequence of statements for 
which control flow is purely linear. 

That is, control always enters a basic block from the top – 
its first instruction – and leaves from the bottom – its last 
instruction.

Basic blocks are often used as the nodes of a CFG, in order 
to reduce its size.
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CFG example (basic blocks)
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x!12

y!5 

if x<y

x!y x!2*y

z!x/y

Lattice theory



Partial order

A partial order is a mathematical structure (S,!)composed 

of a set S and a binary relation ! on S, satisfying the 

following conditions:

1. reflexivity: ∀x ∈ S, x ! x

2. transitivity: ∀x,y,z ∈ S, x ! y $ y ! z ⇒ x ! z

3. anti-symmetry: ∀x,y ∈ S, x ! y $ y ! x ⇒ x = y
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Partial order example

In Java, the set of types along with the subtyping relation 
form a partial order.

According to that order, the type String is smaller (i.e. a 
subtype) of the type Object.

The type String and Integer are not comparable: none 
of them is a subtype of the other.
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Upper bound

Given a partial order (S,!) and a set X ⊆ S, y ∈ S is an 

upper bound for X, written X ! y, if

∀x ∈ X, x ! y.

A least upper bound (lub) for X, written "X, is defined by:

X ! "X $ ∀y ∈ S, X ! y ⇒ "X ! y

Notice that a least upper bound does not always exist.
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Lower bound

Given a partial order (S, !) and a set X ⊆ S, y ∈ S is a lower 

bound for X, written y ! X, if

∀x ∈ X, y ! x.

A greatest lower bound for X, written #X, is defined by:

#X ! X $ ∀y ∈ S, y ! X ⇒ y ! #X

Notice that a greatest lower bound does not always exist.

16

Lattice

A lattice is a partial order L = (S,!) for which "X and #X 

exist for all X ⊆ S.

A lattice has a unique greatest element, written ! and 

pronounced “top”, defined as != "S.

It also has a unique smallest element, written ⊥ and 

pronounced “bottom”, defined as ⊥ = #S.

The height of a lattice is the length of the longest path from 
⊥ to !.
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Finite partial orders

A partial order (S,!) is finite if the set S contains a finite 

number of elements.

For such partial orders, the lattice requirements reduce to 
the following:

• ! and ⊥ exist,

• every pair of elements x,y in S has a least upper bound 
– written x " y – as well as a greatest lower bound – 

written x # y.
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Cover relation

In a partial order (S,!), we say that an element y covers 

another element x if:

(x % y) ∧ (∀z ∈ S, x ! z % y ⇒ x = z)

where x % y ⇔ x ! y ∧ x ! y.

Intuitively, y covers x if y is the smallest element greater 
than x.
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Hasse diagram

A partial order can be represented graphically by a Hasse 
diagram.

In such a diagram, the elements of the set are represented 
by dots.

If an element y covers an element x, then the dot of y is 
placed above the dot of x, and a line is drawn to connect 
the two dots.
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Hasse diagram example
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7 (111)

0 (000)

1 (001) 4 (100)
2 (010)

3 (011) 6 (110)
5 (101)

Hasse diagram for the partial order (S,!) where

S = { 0, 1, …, 7 } and x ! y ⇔ (x & y) = x

bitwise and

Partial order examples
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Which of the following partial orders are lattices?

1 2 3

4 5 6

Fixed points

Monotone function

A function f : L " L is monotone if and only if:

∀x,y ∈ S, x ! y ⇒ f(x) ! f(y)

This does not imply that f is increasing, as constant 
functions are also monotone.

Viewed as functions, # and " are monotone in both 

arguments.
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Fixed point theorem

Definition: a value v is a fixed point of a function f if and 
only if f(v) = v.

Fixed point theorem: In a lattice L with finite height, every 
monotone function f has a unique least fixed point fix(f), 
and it is given by:

fix(f) = ⊥ " f(⊥) " f2(⊥) " f3(⊥) " …

25

Fixed points and equations

Fixed points are interesting as they enable us to solve 
systems of equations of the following form:

x1 = F1(x1, …, xn)
x2 = F2(x1, …, xn)
…
xn = Fn(x1, …, xn)

where x1, ..., xn are variables, and F1, ..., Fn : Ln " L are 
monotone functions.

Such a system has a unique least solution that is the least 
fixed point of the composite function F : Ln " Ln defined as:

F(x1, …, xn) = (F1(x1, …, xn), …, Fn(x1, …, xn))
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Fixed points and inequations

Systems of inequations of the following form:

x1 ! F1(x1, …, xn)

x2 ! F2(x1, …, xn)

…
xn ! Fn(x1, …, xn)

can be solved similarly by observing that
x ! y ⇔ x = x # y and rewriting the inequations.

27

Data-flow analysis

Overview

Data-flow analysis works on a control-flow graph and a 
lattice L. The lattice can either be fixed for all programs, or 
depend on the analysed one.

A variable vn ranging over the values of L is attached to 
every node n of the CFG.

A set of (in)equations for these variables are then extracted 
from the CFG – according to the analysis being performed 
– and solved using the fixed point technique.
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Example: liveness

As we have seen, liveness is a property that can be 
approximated using data-flow analysis.

The lattice to use in that case is L = { P(V),    } where V is 
the set of variables appearing in the analysed program, and 
P is the power set operator (set of all subsets).
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⊆



Example: liveness
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{}

{x} {y} {z}

{x,y} {x,z} {y,z}

{x,y,z}

For a program containing three variables x, y and z, the 
lattice for liveness is the following:

Example: liveness
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To every node n in the CFG, we attach a variable vn giving 
the set of variables live before that node.

The value of that variable is given by:

vn = (vs1 & vs2 & … \ written(n)) & read(n)

where s1, s2, … are the successors of n, read(n) is the set of 
program variables read by n, and written(n) is the set of 
variables written by n.

Example: liveness
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CFG constraints solution

x!read-int

y!read-int

if (x < y)

z!x z!y

print-int z

1

2

3

4 5

6

v1 = v2 \ { x }
v2 = v3 \ { y }
v3 = v4 ∪ v5 ∪ { x, y }

v4 = v6 ∪ { x } \ { z }

v5 = v6 ∪ { y } \ { z }

v6 = { z }

v1 = { }
v2 = { x }
v3 = { x, y }
v4 = { x }
v5 = { y }
v6 = { z }

Fixed point algorithm
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To solve the data-flow constraints, we construct the 
composite function F and compute its least fixed point by 
iteration.

F(x1, x2, x3, x4, x5, x6) =
  (x2\{x}, x3\{y}, x4&x5&{x,y}, x6&{x}\{z}, x6&{y}\{z}, {z})

Iteration x1 x2 x3 x4 x5 x6

0 {"} {"} {"} {"} {"} {"}

1 { } { } { x, y } { x } { y } { z }

2 { } { x"} { x, y } { x } { y } { z }

3 { } { x"} { x, y } { x } { y } { z }

Work-list algorithm
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Computing the fixed point by simple iteration as we did 
works, but is wasteful as the information for all nodes is re-
computed at every iteration.

It is possible to do better by remembering, for every 
variable v, the set dep(v) of the variables whose value 
depends on the value of v itself.

Then, whenever the value of some variable v changes, we 
only re-compute the value of the variables that belong to 
dep(v).

Work-list algorithm
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x1 = x2 = … = xn = ⊥
q = [ v1, …, vn ]
while (q ! [])

assume q = [ vi, … ]
y = Fi (x1, …, xn)
q = q.tail
if (y ! xi)

for (v ∈ dep(vi))
if (v ∉ q) q.append(v)

xi = y



Work-list example: liveness
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q x1 x2 x3 x4 x5 x6

[v1,v2,v3,v4,v5,v6] {} {} {} {} {} {}

[v2,v3,v4,v5,v6] {} {} {} {} {} {}

[v3,v4,v5,v6] {} {} {} {} {} {}

[v4,v5,v6,v2] {} {} {x,y} {} {} {}

[v5,v6,v2,v3] {} {} {x,y} {x} {} {}

[v6,v2,v3,v3] {} {} {x,y} {x} {y} {}

[v2,v3,v4,v5] {} {} {x,y} {x} {y} {z}

[v3,v4,v5,v1] {} {x} {x,y} {x} {y} {z}

[v4,v5,v1] {} {x} {x,y} {x} {y} {z}

[v5,v1] {} {x} {x,y} {x} {y} {z}

[v1] {} {x} {x,y} {x} {y} {z}

[] {} {x} {x,y} {x} {y} {z}

Work-list improvements
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In our liveness example, the work-list algorithm would have 
terminated in only six iterations if the initial queue had 
been reversed!

This is due to the fact that liveness analysis is a backward 
analysis: the value of variable vn depends on the successors 
of n. For such analysis, it is better to organise the queue 
with the latest nodes first.

Working with basic blocks

Until now, we considered that the CFG nodes were single 
instructions. In practice, basic blocks tend to be used as 
nodes, to reduce the size of the CFG.

When data-flow analysis is performed on a CFG composed 
of basic blocks, a variable is attached to every block, not to 
every instruction. Computing the result of the analysis for 
individual instructions is however trivial.
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Liveness example revisited
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CFG constraints solution

x!read-int

y!read-int

if (x < y)

z!x z!y

print-int z

1

2 3

4

v1 = v2 ∪ v3 \ { x, y }

v2 = v4 ∪ { x } \ { z }

v3 = v4 ∪ { y } \ { z }

v4 = { z }

v1 = { }
v2 = { x }
v3 = { y }
v4 = { z }

Analysis example #2:
available expressions

Available expressions

A non-trivial expression in a program is available at some 
point if its value has already been computed earlier.

Data-flow analysis can be used to approximate the set of 
expressions available at all program points. The result from 
that analysis can then be used to eliminate common sub-
expressions, for example.
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Intuitions

We will compute the set of expressions available after every 
node of the CFG.

Intuitively, an expression e is available after some node n if:

• it is available after all predecessors of n, or

• it is defined by n itself, and not killed by n.

A node n kills an expression e if it gives a new value to a 
variable used by e. For example, the assignment x!y kills 
all expressions that use x, like x+1.
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Equations

To approximate available expressions, we attach to every 
node n of the CFG a variable vn containing the set of 
expressions available after it.

Then we derive constraints from the CFG nodes, which 
have the form:

vn = (vp1 ∩ vp2 ∩ … \ kill(n)) ∪ gen(n)

where gen(n) is the set of expressions computed by n, and 
kill(n) the set of expressions killed by n.
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Example
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constraints

v1={a<b}
v2={a+b}∪(v1#x)

v3={d+e}∪(v1#x)

v4={x+1}∪(v2#y)

v5={a+b}∪(v3#y)

v6={a+b}∪(v4∩v5)#z

v7={x+1}∪v5#t

CFG

x!a+b

y!x+1 y!a+b

x!d+e

z!a+b

if a<b

t!x+1

1

2 3

4 5

6

7

solution

v1={a<b}
v2={a+b, a<b}
v3={d+e, a<b}
v4={x+1, a+b, a<b}
v5={a+b, d+e, a<b}
v6={a+b, a<b}
v7={x+1, a+b, a<b}

Notation:
S#x = S \ all expressions using variable x.

vn=set of expressions live after node n.

Analysis example #3:
very busy expressions

Very busy expressions

An expression is very busy at some program point if it will 
definitely be evaluated before its value changes.

Data-flow analysis can approximate the set of very busy 
expressions for all program points. The result of that 
analysis can then be used to perform code hoisting: the 
computation of a very busy expression e can be performed 
at the earliest point where it is busy.
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Intuitions

We will compute the set of very busy expressions before 
every node of the CFG.

Intuitively, an expression e is very busy before node n if it is 
evaluated by n, or if it is very busy in all successors of n, 
and it is not killed by n.
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Equations

To approximate very busy expressions, we attach to each 
node n of the CFG a variable vn containing the set of 
expressions that are very busy before it.

Then we derive constraints from the CFG nodes, which 
have the form:

vn = (vs1 ∩ vs2 ∩ … \ kill(n)) ∪ gen(n)

where gen(n) is the set of expressions computed by n, and 
kill(n) the set of expressions killed by n.
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Example

50

CFG

y!a+b

x!1001

2

3

4

5

x!x-1

if x>0

print y

constraints

v1=v2#x
v2={a+b}∪v3#y

v3={x-1}∪v4#x

v4={x>0}∪(v5∩v2)

v5={}

solution

v1={a+b}
v2={a+b,x-1}
v3={x-1}
v4={x>0}
v5={}

Notation:
S#x = S \ all expressions using variable x.

vn=set of expressions very busy before node n.

Analysis example #4:
reaching definitions

Reaching definitions

The reaching definitions for a program point are the 
assignments that may have defined the values of variables 
at that point.

Data-flow analysis can approximate the set of reaching 
definitions for all program points. These sets can then be 
used to perform constant propagation, for example.
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Intuitions

We will compute the set of reaching definitions after every 
node of the CFG. This set will be represented as a set of 
CFG node identifiers.

Intuitively, the reaching definitions after a node n are all the 
reaching definitions of the predecessors of n, minus those 
that define a variable defined by n itself, plus n itself.
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Equations

To approximate reaching definitions, we attach to node n of 
the CFG a variable vn containing the set of definitions (CFG 
nodes) that can reach n.

For a node n that is not an assignment, the reaching 
definitions are simply those of its predecessors:

vn = (vp1 ∪ vp2 ∪ …)

For a node n that is an assignment, the equation is more 
complicated:

vn = (vp1 ∪ vp2 ∪ …) \ kill(n) ∪ { n }

where kill(n) are the definitions killed by n, i.e. those which 
define the same variable as n itself. For example, a 
definition like x!y kills all expressions of the form x!…
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Example
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CFG

z!0

x!1001

2

3

4

5

z!z+3

x!x-1

if x>0

print z6

constraints

v1={1}
v2=v1#z ∪ {2}

v3=(v2∪v5)#z ∪ {3}

v4=v3#x ∪ {4}

v5=v4

v6=v5

solution

v1={1}
v2={1,2}
v3={1,3,4}
v4={3,4}
v5={3,4}
v6={3,4}

Notation:
S#x = S \ all nodes defining variable x.

vn=set of reaching definitions after node n.

Putting data-flow
analyses to work

Using data-flow analysis

Once a particular data-flow analysis has been conducted, 
its result can be used to optimise the analysed program.

We will quickly examine some transformations that can be 
performed using the data-flow analysis presented before.
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Dead-code elimination

Useless assignments can be eliminated using liveness 
analysis, as follows:

Whenever a CFG node n is of the form x!e, and x is 
not live after n, then the assignment is useless and node 
n can be removed.
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CSE

Common sub-expressions can be eliminated using 
availability information, as follows:

Whenever a CFG node n computes an expression of the 
form x op y and x op y is available before n, then the 
computation within n can be replaced by a reference to 
the previously-computed value.
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Constant propagation

Constant propagation can be performed using the result of 
reaching definitions analysis, as follows:

When a CFG node n uses a value x and the only 
definition of x reaching n has the form x!c where c is a 
constant, then the use of x in n can be replaced by c.
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Copy propagation

Copy propagation – very similar to constant propagation – 
can be performed using the result of reaching definitions 
analysis, as follows:

When a CFG node n uses a value x, and the only 
definition of x reaching n has the form x!y where y is a 
variable, and y is not redefined on any path leading to n, 
then the use of x in n can be replaced by y.
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