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Program optimisation



What is optimisation?

The goal of program optimisation is to discover, at 
compilation time, information about the run-time 
behaviour of the program, and use that information to 
improve the generated code.

What improving means depends on the situation: often it 
implies reducing the execution time, but it can also imply 
reducing the size of the generated code, or the consumed 
memory, etc.

In this course, we will concentrate on the optimisation of 
execution time.
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Correctness of optimisation

The most important feature of any optimisation is that it is 
correct, in the sense that it preserves the behaviour of the 
original program.

This implies in particular that if the original program would 
have failed during execution, the optimised one must also 
fail, and for the same reason – a property that is often 
forgotten.
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Unattainable optimality

The term optimisation seems to imply that the resulting 
program is optimal.

It can be shown, however, that it is not possible to 
completely optimise a program, as this would make the 
halting problem solvable.

So optimisation is really about improving the generated 
code, not about making it optimal.
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Anatomy of an optimisation

All optimisations can be seen as being composed of two 
phases:

1. an analysis phase, during which some part of the 
program is examined and properties are extracted,

2. a rewriting phase, during which the optimisation is 
applied by transforming the program, according to the 
result of the analysis.
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Optimisation kinds

Two kinds of optimisations can be distinguished:

• machine-independent optimisations, which decrease 
the amount of work that the program has to perform – 
e.g. dead code elimination,

• machine-dependent optimisations, which take 
advantage of characteristics of the target machine – e.g. 
instruction scheduling.
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Optimisation examples

Machine-independent optimisations include:

• constant folding, which replaces constant expressions 
by their value,

• common sub-expression elimination, which avoids 
repeated evaluation of expressions,

• dead-code elimination, which eliminates code that will 
never be executed,

• etc.
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Optimisation examples

Machine-dependent optimisations include:

• instruction scheduling, which rearranges instructions to 
avoid processor stalls,

• register allocation, which tries to use registers instead 
of memory as much as possible,

• peephole optimisation, which replaces given 
instruction sequences by faster alternatives,

• etc.
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Optimisation scope

Optimisations can also be categorised according to their 
scope, that is the part of the program they analyse and 
transform:

• local optimisations work on basic blocks,

• global optimisations work on whole functions (and not 
on the whole program as their name suggests),

• whole-program optimisations work on the complete 
program.
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Program representation

The representation used for the program plays a crucial role 
for optimisation. It must be at the right level of abstraction 
to ensure that:

• the analysis is as easy as possible,

• no opportunities are lost – e.g. some common sub-
expressions only appear after high-level constructs like 
array access have been translated to more basic 
instructions.
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When to optimise

Optimisation phases can be placed at various stages of the 
compilation process.

Machine-independent optimisations tend to be placed at 
the beginning, and work on high-level representations of 
the program (e.g. the AST).

Machine-dependent optimisations tend to be placed at the 
end, and work on low-level representations of the program 
(e.g. linear code).
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Inlining



Inlining

Inlining (also called inline expansion) consists in replacing 
a call to a function with the body of that function – 
augmented with appropriate bindings for parameters.

In other words, it consists in performing β-reduction – i.e. 
function application – during compilation.
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Inlining example
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(car (cons 1 2))

(car (let ((fst 1) (snd 2))
       (vector fst snd)))

(let ((pair (let ((fst 1) (snd 2))
              (vector fst snd))))
  (vector-ref pair 0))



Inlining and other optimisations
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In itself, inlining is already interesting as it saves the cost of 
function calls.

Moreover, inlining often opens the door to many other 
optimisations, as the inlined function can be specialised to 
its environment.

In our example, after inlining, the whole expression could 
be replaced by its value (1), using a series of well-known 
optimisations.



What should be inlined?

Inlining cannot be performed indiscriminately as this would 
result in code size explosion in most cases. Therefore, 
heuristics have to be used to decide when inlining should 
be performed.

These heuristics are generally based on the size of the 
function to inline or the “importance” of the call site. Also, 
functions that are called from a single location in the 
program can always be inlined, and the original version 
deleted.
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Implementing inlining

Inlining is relatively straightforward to implement, and can 
be performed early in the compilation process. Two 
potential problems must be considered:

1. name capture, which can appear if the body of the 
inlined function is not α-renamed before being 
inlined,

2. non-termination, which can occur when recursive 
functions are inlined blindly.
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Inlining requirement

In order to inline a function call, it must be possible to 
determine statically the function that will be invoked at run 
time.

As we have seen, this is generally impossible to do in 
object-oriented languages, because of the dynamic nature 
of method dispatch.

The same problem appears with higher-order functions, 
which are heavily used in functional languages.
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Inlining in OO languages
Inlining in object-oriented languages can only be 
performed when the set of potential method bodies 
designated by a call is known and small – e.g. a singleton.

Computing these sets statically either requires an analysis 
of the whole program, or has to rely on specific 
characteristics of the language. In Java, for example, a call 
to a static method always refers to a single method body.

Given the difficulty of statically computing the set of 
potential method bodies designated by a call, one option is 
to determine them dynamically.

As we have seen, polymorphic inline caching does 
precisely that, by inlining methods into the specialised 
dispatch functions.
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Inlining in functional languages

Inlining in functional languages can only be performed 
when the set of functional values that can flow to a given 
call site is known and small – typically a singleton.

An analysis called control-flow analysis (CFA) can be used 
to compute conservative approximations of these sets.
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Summary

The goal of optimisations is to analyse the program and 
then transform it based on that analysis, so that it performs 
better in some respect.

Inlining is one example of optimisation. It consists in 
replacing a call to a known function by the body of that 
function. It is interesting in itself as it saves the cost of a 
function call, but also because it enables further 
optimisation.
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