
Introduction to
program optimisation

Michel Schinz – based on Erik Stenman’s slides
2007–05–25

Program optimisation

What is optimisation?

The goal of program optimisation is to discover, at
compilation time, information about the run-time
behaviour of the program, and use that information to
improve the generated code.

What improving means depends on the situation: often it
implies reducing the execution time, but it can also imply
reducing the size of the generated code, or the consumed
memory, etc.

In this course, we will concentrate on the optimisation of
execution time.

3

Correctness of optimisation

The most important feature of any optimisation is that it is
correct, in the sense that it preserves the behaviour of the
original program.

This implies in particular that if the original program would
have failed during execution, the optimised one must also
fail, and for the same reason – a property that is often
forgotten.

4

Unattainable optimality

The term optimisation seems to imply that the resulting
program is optimal.

It can be shown, however, that it is not possible to
completely optimise a program, as this would make the
halting problem solvable.

So optimisation is really about improving the generated
code, not about making it optimal.

5

Anatomy of an optimisation

All optimisations can be seen as being composed of two
phases:

1. an analysis phase, during which some part of the
program is examined and properties are extracted,

2. a rewriting phase, during which the optimisation is
applied by transforming the program, according to the
result of the analysis.

6

Optimisation kinds

Two kinds of optimisations can be distinguished:

• machine-independent optimisations, which decrease
the amount of work that the program has to perform –
e.g. dead code elimination,

• machine-dependent optimisations, which take
advantage of characteristics of the target machine – e.g.
instruction scheduling.

7

Optimisation examples

Machine-independent optimisations include:

• constant folding, which replaces constant expressions
by their value,

• common sub-expression elimination, which avoids
repeated evaluation of expressions,

• dead-code elimination, which eliminates code that will
never be executed,

• etc.

8

Optimisation examples

Machine-dependent optimisations include:

• instruction scheduling, which rearranges instructions to
avoid processor stalls,

• register allocation, which tries to use registers instead
of memory as much as possible,

• peephole optimisation, which replaces given
instruction sequences by faster alternatives,

• etc.

9

Optimisation scope

Optimisations can also be categorised according to their
scope, that is the part of the program they analyse and
transform:

• local optimisations work on basic blocks,

• global optimisations work on whole functions (and not
on the whole program as their name suggests),

• whole-program optimisations work on the complete
program.

10

Program representation

The representation used for the program plays a crucial role
for optimisation. It must be at the right level of abstraction
to ensure that:

• the analysis is as easy as possible,

• no opportunities are lost – e.g. some common sub-
expressions only appear after high-level constructs like
array access have been translated to more basic
instructions.

11

When to optimise

Optimisation phases can be placed at various stages of the
compilation process.

Machine-independent optimisations tend to be placed at
the beginning, and work on high-level representations of
the program (e.g. the AST).

Machine-dependent optimisations tend to be placed at the
end, and work on low-level representations of the program
(e.g. linear code).

12

Inlining

Inlining

Inlining (also called inline expansion) consists in replacing
a call to a function with the body of that function –
augmented with appropriate bindings for parameters.

In other words, it consists in performing β-reduction – i.e.
function application – during compilation.

14

Inlining example

15

(car (cons 1 2))

(car (let ((fst 1) (snd 2))
 (vector fst snd)))

(let ((pair (let ((fst 1) (snd 2))
 (vector fst snd))))
 (vector-ref pair 0))

Inlining and other optimisations

16

In itself, inlining is already interesting as it saves the cost of
function calls.

Moreover, inlining often opens the door to many other
optimisations, as the inlined function can be specialised to
its environment.

In our example, after inlining, the whole expression could
be replaced by its value (1), using a series of well-known
optimisations.

What should be inlined?

Inlining cannot be performed indiscriminately as this would
result in code size explosion in most cases. Therefore,
heuristics have to be used to decide when inlining should
be performed.

These heuristics are generally based on the size of the
function to inline or the “importance” of the call site. Also,
functions that are called from a single location in the
program can always be inlined, and the original version
deleted.

17

Implementing inlining

Inlining is relatively straightforward to implement, and can
be performed early in the compilation process. Two
potential problems must be considered:

1. name capture, which can appear if the body of the
inlined function is not α-renamed before being
inlined,

2. non-termination, which can occur when recursive
functions are inlined blindly.

18

Inlining requirement

In order to inline a function call, it must be possible to
determine statically the function that will be invoked at run
time.

As we have seen, this is generally impossible to do in
object-oriented languages, because of the dynamic nature
of method dispatch.

The same problem appears with higher-order functions,
which are heavily used in functional languages.

19

Inlining in OO languages
Inlining in object-oriented languages can only be
performed when the set of potential method bodies
designated by a call is known and small – e.g. a singleton.

Computing these sets statically either requires an analysis
of the whole program, or has to rely on specific
characteristics of the language. In Java, for example, a call
to a static method always refers to a single method body.

Given the difficulty of statically computing the set of
potential method bodies designated by a call, one option is
to determine them dynamically.

As we have seen, polymorphic inline caching does
precisely that, by inlining methods into the specialised
dispatch functions.

20

Inlining in functional languages

Inlining in functional languages can only be performed
when the set of functional values that can flow to a given
call site is known and small – typically a singleton.

An analysis called control-flow analysis (CFA) can be used
to compute conservative approximations of these sets.

21

Summary

The goal of optimisations is to analyse the program and
then transform it based on that analysis, so that it performs
better in some respect.

Inlining is one example of optimisation. It consists in
replacing a call to a known function by the body of that
function. It is interesting in itself as it saves the cost of a
function call, but also because it enables further
optimisation.

22

