
Continuations

Michel Schinz
2007–05–04

Control flow of
Web applications

The adder application

The following Scheme program asks for two numbers, and
displays their sum – assuming the obvious definitions for
prompt-int and display-int:

(let ((n1 (prompt-int "n1=")))
 (let ((n2 (prompt-int "n2=")))
 (display-int "n1+n2=" (+ n1 n2))))

Its control flow is completely obvious...

3

control
flow

The adder Web application

Let’s assume that we want to take our adder application
and turn it into a Web application, with the requirement
that every interaction happens on a separate page.

That is, we want to use a first Web page to ask for the first
number, a second page to ask for the second number, and a
third one to display their sum.

If we suppose that we have the proper primitives at our
disposal, this should be trivial:

(let ((n1 (web-prompt-int "n1=")))
 (let ((n2 (web-prompt-int "n2=")))
 (web-display-int "n1+n2=" (+ n1 n2))))

What about control flow?

4

Browser power

When interacting with a Web application, the user has
some very powerful means to alter its flow of control:

• the “back” button can be used to go back to a previous
state,

• bookmarks can be used to take a snapshot of the
execution state,

• URL copying can be used to duplicate state.

5

Control flow comparison

6

read n1

read n2

print n1+n2

Normal application Web application

read n1

read n2

print n1+n2

read n2

print n1+n2

duplicate

b
ac

k

bookmark

Solutions for Web applications

7

Several solutions have been developed to deal with the
unusual control flow of Web programs:

• do nothing and let the programmer deal with the
complexity – e.g. PHP,

• tame the browser by disabling both the “back” button
and cloning – e.g. JWIG,

• use continuations to please the user and the
programmer – e.g. Seaside.

Continuations

Suspended computations

In our adder application, each time some data has to be
obtained from the user, the execution of the program is
suspended. It is then resumed as soon as the user submits
the data.

The power of the Web version of our application comes
from the fact that those suspended computations are given
a name: the URL associated with them! The user can
therefore manipulate those suspended computations at will.
She can for example resume the same suspended
computation several times, something that is not possible
with the non-Web version of the application.

9

Continuations

A continuation is a data structure representing a suspended
computation.

The main operation that can be performed on a
continuation is resuming – or throwing – it. When a
continuation k is resumed, the current execution of the
program is replaced by the execution of k’s computation.

A continuation describes how to continue a suspended
computation, hence the name.

10

Current continuation
At any given point during the execution of a program, it is
possible to talk about the current continuation. This
continuation describes what still needs to be done in order
to complete the running program.

For example, imagine that our adder application is used to
sum 15 and 17. How can the current continuation be
described at various points of the execution?

11

ask
for two numbers
n1 and n2, print

n1+n2

ask for one
number n2, print

15+n2

print
32

ask for n1 ask for n2 print sum

n1=15 n2=17

stop

Continuations and the Web

In a Web application, execution is suspended each time a
page is presented to the user. When the user proceeds – by
clicking on a link or by submitting a form – execution is
resumed.

In terms of continuations, this means that the current
continuation is saved on the server whenever a page is
displayed, and associated with a (unique) URL. That saved
continuation is resumed later when the user requests its
URL.

12

Functions and continuations
In any programming language, when a function f calls a
function g, the execution of f is suspended while g is
running, and resumed as soon as g is finished.

In terms of continuations, calling a function therefore
consists in saving the current continuation, and then
proceed with the execution of the called function.
Returning from a function consists in restoring the most
recently saved continuation.

In most languages, continuations can only be manipulated
in that indirect fashion, through function calls and returns.
However, some languages like Scheme offer first-class
continuations, that is the ability to manipulate
continuations like all other values.

13

Continuations in Scheme

Exposing continuations

How should (first-class) continuations be exposed to the
programmer?

In an object-oriented language, continuations could be
represented as a class, with methods to obtain the current
continuation, or resume an existing continuation.

In a functional language, continuations can be represented
as functions. Invoking such “continuation functions”
resumes the associated continuation. This is how Scheme
and several other languages expose continuations.

15

Continuations in Scheme

Scheme provides the primitive call-with-current-
continuation – often abbreviated to call/cc – to
obtain the current continuation.

This primitive expects a function as argument, and calls that
function with the current continuation as argument, reified
as a standard Scheme function.

If that function is invoked later, its continuation will be
resumed, and replace the current continuation of the
program. Example:

(call/cc (lambda (k) (k 10) 20))
 ⇒ 10

16

(reified) continuation

Understanding call/cc

To understand call/cc, it is useful to distinguish two
cases:

1. If the continuation is not invoked, then execution
proceeds like if call/cc was not present. Example:
(call/cc (lambda (k) (+ 5 6)))
 ⇒ 11

2. If the continuation is invoked with some value v, then
execution proceeds like if the call to call/cc
returned immediately the value v. Example:
(call/cc (lambda (k) (+ (k 5) 6)))
 ⇒ 5

17

call/cc examples
(call/cc (lambda (k) 10))
 ⇒ 10
(call/cc (lambda (k) (k 10)))
 ⇒ 10
(+ 1 (call/cc (lambda (k) (k 10) 20)))
 ⇒ 11
(call/cc (lambda (k) (k (k (k 20)))))
 ⇒ 20
(call/cc (lambda (k1)
 (+ (call/cc (lambda (k2) 5))
 (k1 6))))
 ⇒ 6

18

Example use: local return

Continuations can be used to return immediately from a
function, like the return statement in Java.

This is achieved by obtaining the current continuation at
the beginning of the function, and invoking it to return.

(define contains-negative?
 (lambda (l)
 (call/cc
 (lambda (return)
 (for-each (lambda (e)
 (if (< e 0)
 (return #t)))
 l)
 #f))))

19

Example use: non-local return
Continuations can also be used to perform “non-local
returns”, similar to exceptions:
(define average
 (lambda (l throw)
 (if (null? l)
 (throw "empty list")
 (/ (fold + 0 l) (length l)))))

(define averages
 (lambda (ls)
 (let ((res (call/cc
 (lambda (throw)
 (map (lambda (l) (average l throw))
 ls)))))
 (if (string? res)
 (error res)
 res))))

20

More advanced uses

Continuations are probably the most powerful control
operator available in any language.

Apart from exceptions and returns, they can also be used to
implement:

• threads,

• coroutines,

• C#-like iterators,

• etc.

21

Implementing call/cc

To implement call/cc, it must be possible to save the
current continuation at some point, and restore it later. This
can be achieved using two different techniques:

1. a low-level technique, which consists in saving and
restoring the continuations that are maintained at run
time during function calls and returns, and

2. a more high-level technique, which consists in
transforming the source program to ensure that the
current continuation is always explicitly represented as
a function, and therefore easy to manipulate.

We will explore both techniques in turn.

22

Technique #1:
machine continuations

Machine continuations

As explained earlier, all languages have continuations, as
they are used to implement function calls:

• before a function call, the current continuation is saved,

• when a function returns, the most recently saved
continuation is resumed.

However, these continuations – that we will call machine
continuations – are usually not first-class values that can be
manipulated by the programmer. The aim of call/cc is
precisely to turn those continuations into first-class values!

24

call/cc

Assuming that our language is augmented with two new
primitives to save and restore machine continuations,
call/cc is easy to implement:

(define call/cc
 (lambda (f)
 (let ((cc (get-machine-continuation)))
 (f (lambda (r)
 (set-machine-continuation! cc)
 r)))))

It remains to be seen how those two primitives can be
implemented.

25

Continuation representation

Where are machine continuations stored? In other words,
where is the information necessary to return from a
function call – return address, register contents – stored?

The answer depends on the machine being used, and on
calling conventions.

In the simplest case, all that information is stored on the
stack before a function call. Therefore, the frame pointer
represents the continuation of a function!

In more complex cases, the information is stored both in
the stack and in callee-saved registers. Some more work is
necessary to save and restore continuations, but the basic
idea is the same.

26

The stack
In a language without first-class continuations, the
following two properties are true:

• continuations are saved and resumed in LIFO order,

• continuations can only be resumed once, which implies
that they can be freed after having been resumed.

These properties make it possible to use a stack to store
continuations. Unfortunately, they do not hold for
languages with first-class continuations!

Implementations of such languages either abandon the
stack completely and allocate all activation frames on the
heap, or lazily copy those frames from the stack to the heap
when continuations are saved.

27

Technique #2:
continuation-passing style

Continuations “by hand”

What can we do if we want to use continuations but the
language we use doesn’t offer them?

One idea is to transform the program to explicitly represent
continuations using functions.

A program is said to be in continuation-passing style (CPS)
if:

• all functions receive a continuation as an additional
argument, and

• they invoke that continuation with their result instead of
returning that result to the caller – i.e. no function ever
returns.

29

CPS example

To illustrate CPS, we will use the following simplified
variant of our adder program:

(print-int (+ (read-int) (read-int)))

To transform this program to CPS, we need to use functions
to represent the current continuation at all possible points
of its execution: just after reading the first integer, after
reading the second, etc.

30

CPS example

31

(print-int (+ (read-int) (read-int)))

(read-int/cps
 (lambda (n1)
 (read-int/cps
 (lambda (n2)
 (+/cps n1 n2
 (lambda (sum)
 (print-int sum)))))))

C
PSCPS version of

read-int

CPS
version of +

Primordial continuation

32

In the CPS version of our example, we cheated by using the
normal version of print-int. Rigourously, we should
have used the CPS version. But what continuation should it
get?

More generally, what is the primordial continuation, i.e.
the continuation of a complete program? A function halting
execution is a good choice, which could be defined as
follows given a halt primitive:

(lambda (res) (halt))

Defining call/cc/cps

As long as the program is not in CPS, it is not possible to
define call/cc, which must be a primitive.

However, as soon as the program is in CPS, defining the
CPS version of call/cc – i.e. call/cc/cps – is
relatively simple.

To define it, it is useful to remember that the goal of call/
cc/cps is to reify the current continuation by making it
available as a standard (CPS) function.

That function, when applied to an argument x, should
invoke the continuation that was current at the time when
call/cc/cps was invoked, passing it x, and ignore the
current continuation.

33

Defining call/cc/cps

The definition of call/cc/cps is:

(define call/cc/cps
 (lambda (f k)
 (f (lambda (res ignored-k) (k res))
 k)))

Notice how the reified continuation ignores the current
continuation (ignored-k) and uses the captured one (k)
instead.

34

reified
continuation

CPS conversion
for minischeme

CPS conversion

As we have seen, we can offer continuations by first
transforming the program to CPS, and then providing an
implementation of call/cc/cps.

Doing this transformation by hand is tiresome and error-
prone, the compiler should do it for us!

This is the idea of CPS conversion, which will be presented
here as a function K mapping minischeme terms to
equivalent terms in CPS.

36

Simplified minischeme

To simplify the presentation, we will define CPS conversion
for a version of minischeme restricted as follows:

• the body of a lambda expression is composed of a
single expression,

• all functions take exactly one argument,

• there is no let expression, as it is only syntactic sugar:
(let ((v1 e1) …) b1 …)
 ⇔ ((lambda (v1 …) b1 …) e1 …)

Removing those restrictions is relatively easy, and left as an
exercise.

37

Conversion outline

The basic idea of CPS conversion is to translate terms to
functions that expect a continuation and invoke that
continuation with the value of the term.

Therefore, all terms are translated to an expression with the
following structure:

 (λ (k) some expression using k)

38

shortcut for
lambda

CPS for minischeme
K[v] =
 (λ (k) (k v))

K[(if c t e)] =
 (λ (k) (K[c] (λ (cv) (if cv (K[t] k) (K[e] k)))))

K[(λ (x) b)] =
 (λ (k) (k (λ (x k2) (K[b] k2))))

K[(f x)] =
 (λ (k)
 (K[f] (λ (fv) (K[x] (λ (xv) (fv xv k))))))

K[(p x y)] when p is a primitive =
 (λ (k)
 (K[x] (λ (xv) (K[y] (λ (yv) (p xv yv))))))

39

Example translation

40

(print-int (+ (read-int) (read-int)))

K

much more
complicated, but

equivalent to what
we would obtain

by hand

(lambda (k1)
 ((lambda (k2) (k2 print-int/cps))
 (lambda (fv1)
 ((lambda (k3)
 ((lambda (k4)
 ((lambda (k5)
 (k5 read-int/cps))
 (lambda (fv2) (fv2 k4))))
 (lambda (xv1)
 ((lambda (k6)
 ((lambda (k7) (k7 read-int/cps))
 (lambda (fv3) (fv3 k6))))
 (lambda (yv) (k3 (+ xv1 yv)))))))
 (lambda (xv2) (fv1 xv2 k1))))))

Improving the translation

41

The previous examples make it clear that the translation we
defined generates much more complex code than the one
we obtained by hand earlier.

Other, more complicated translations to CPS can be
defined in order to produce simpler code. We will not
cover them here, however.

Summary

Continuations are the “ultimate” control operator. They can
be used to implement many powerful concepts like threads,
exceptions, etc.

Continuations can either be implemented in the virtual
machine – basically by copying the stack – or by a
transformation of the program to continuation-passing style
(CPS), done by the compiler.

One important characteristic of CPS is that all calls are tail
calls.

42

