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Control flow of
Web applications



The adder application

The following Scheme program asks for two numbers, and 
displays their sum – assuming the obvious definitions for 
prompt-int and display-int:

(let ((n1 (prompt-int "n1=")))
  (let ((n2 (prompt-int "n2=")))
    (display-int "n1+n2=" (+ n1 n2))))

Its control flow is completely obvious...
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The adder Web application

Let’s assume that we want to take our adder application 
and turn it into a Web application, with the requirement 
that every interaction happens on a separate page.

That is, we want to use a first Web page to ask for the first 
number, a second page to ask for the second number, and a 
third one to display their sum.

If we suppose that we have the proper primitives at our 
disposal, this should be trivial:

(let ((n1 (web-prompt-int "n1=")))
  (let ((n2 (web-prompt-int "n2=")))
    (web-display-int "n1+n2=" (+ n1 n2))))

What about control flow?
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Browser power

When interacting with a Web application, the user has 
some very powerful means to alter its flow of control:

• the “back” button can be used to go back to a previous 
state,

• bookmarks can be used to take a snapshot of the 
execution state,

• URL copying can be used to duplicate state.
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Control flow comparison
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Solutions for Web applications
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Several solutions have been developed to deal with the 
unusual control flow of Web programs:

• do nothing and let the programmer deal with the 
complexity – e.g. PHP,

• tame the browser by disabling both the “back” button 
and cloning – e.g. JWIG,

• use continuations to please the user and the 
programmer – e.g. Seaside.



Continuations



Suspended computations

In our adder application, each time some data has to be 
obtained from the user, the execution of the program is 
suspended. It is then resumed as soon as the user submits 
the data.

The power of the Web version of our application comes 
from the fact that those suspended computations are given 
a name: the URL associated with them! The user can 
therefore manipulate those suspended computations at will. 
She can for example resume the same suspended 
computation several times, something that is not possible 
with the non-Web version of the application.

9



Continuations

A continuation is a data structure representing a suspended 
computation.

The main operation that can be performed on a 
continuation is resuming – or throwing – it. When a 
continuation k is resumed, the current execution of the 
program is replaced by the execution of k’s computation.

A continuation describes how to continue a suspended 
computation, hence the name.
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Current continuation
At any given point during the execution of a program, it is 
possible to talk about the current continuation. This 
continuation describes what still needs to be done in order 
to complete the running program.

For example, imagine that our adder application is used to 
sum 15 and 17. How can the current continuation be 
described at various points of the execution?
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Continuations and the Web

In a Web application, execution is suspended each time a 
page is presented to the user. When the user proceeds – by 
clicking on a link or by submitting a form – execution is 
resumed.

In terms of continuations, this means that the current 
continuation is saved on the server whenever a page is 
displayed, and associated with a (unique) URL. That saved 
continuation is resumed later when the user requests its 
URL.
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Functions and continuations
In any programming language, when a function f calls a 
function g, the execution of f is suspended while g is 
running, and resumed as soon as g is finished.

In terms of continuations, calling a function therefore 
consists in saving the current continuation, and then 
proceed with the execution of the called function. 
Returning from a function consists in restoring the most 
recently saved continuation.

In most languages, continuations can only be manipulated 
in that indirect fashion, through function calls and returns. 
However, some languages like Scheme offer first-class 
continuations, that is the ability to manipulate 
continuations like all other values.
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Continuations in Scheme



Exposing continuations

How should (first-class) continuations be exposed to the 
programmer?

In an object-oriented language, continuations could be 
represented as a class, with methods to obtain the current 
continuation, or resume an existing continuation.

In a functional language, continuations can be represented 
as functions. Invoking such “continuation functions” 
resumes the associated continuation. This is how Scheme 
and several other languages expose continuations.
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Continuations in Scheme

Scheme provides the primitive call-with-current-
continuation – often abbreviated to call/cc – to 
obtain the current continuation.

This primitive expects a function as argument, and calls that 
function with the current continuation as argument, reified 
as a standard Scheme function.

If that function is invoked later, its continuation will be 
resumed, and replace the current continuation of the 
program. Example:

(call/cc (lambda (k) (k 10) 20))
  ⇒ 10
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Understanding call/cc

To understand call/cc, it is useful to distinguish two 
cases:

1. If the continuation is not invoked, then execution 
proceeds like if call/cc was not present. Example:
(call/cc (lambda (k) (+ 5 6)))
  ⇒ 11

2. If the continuation is invoked with some value v, then 
execution proceeds like if the call to call/cc 
returned immediately the value v. Example:
(call/cc (lambda (k) (+ (k 5) 6)))
  ⇒ 5
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call/cc examples
(call/cc (lambda (k) 10))
  ⇒ 10
(call/cc (lambda (k) (k 10)))
  ⇒ 10
(+ 1 (call/cc (lambda (k) (k 10) 20)))
  ⇒ 11
(call/cc (lambda (k) (k (k (k 20)))))
  ⇒ 20
(call/cc (lambda (k1)
           (+ (call/cc (lambda (k2) 5))
              (k1 6))))
  ⇒ 6
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Example use: local return

Continuations can be used to return immediately from a 
function, like the return statement in Java.

This is achieved by obtaining the current continuation at 
the beginning of the function, and invoking it to return.

(define contains-negative?
  (lambda (l)
    (call/cc
     (lambda (return)
       (for-each (lambda (e)
                   (if (< e 0)
                     (return #t)))
                 l)
       #f))))
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Example use: non-local return
Continuations can also be used to perform “non-local 
returns”, similar to exceptions:
(define average                                                                 
  (lambda (l throw)                                                             
    (if (null? l)                                                               
        (throw "empty list")                                                    
        (/ (fold + 0 l) (length l)))))
                                     
(define averages                                                                
  (lambda (ls)                                                                  
    (let ((res (call/cc                                                         
                (lambda (throw)                                                 
                  (map (lambda (l) (average l throw))
                       ls)))))                   
      (if (string? res)                                                         
          (error res)                                                           
          res))))
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More advanced uses

Continuations are probably the most powerful control 
operator available in any language.

Apart from exceptions and returns, they can also be used to 
implement:

• threads,

• coroutines,

• C#-like iterators,

• etc. 
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Implementing call/cc

To implement call/cc, it must be possible to save the 
current continuation at some point, and restore it later. This 
can be achieved using two different techniques:

1. a low-level technique, which consists in saving and 
restoring the continuations that are maintained at run 
time during function calls and returns, and

2. a more high-level technique, which consists in 
transforming the source program to ensure that the 
current continuation is always explicitly represented as 
a function, and therefore easy to manipulate.

We will explore both techniques in turn.
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Technique #1:
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Machine continuations

As explained earlier, all languages have continuations, as 
they are used to implement function calls:

• before a function call, the current continuation is saved,

• when a function returns, the most recently saved 
continuation is resumed.

However, these continuations – that we will call machine 
continuations – are usually not first-class values that can be 
manipulated by the programmer. The aim of call/cc is 
precisely to turn those continuations into first-class values!
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call/cc

Assuming that our language is augmented with two new 
primitives to save and restore machine continuations, 
call/cc is easy to implement:

(define call/cc
  (lambda (f)
    (let ((cc (get-machine-continuation)))
      (f (lambda (r)
           (set-machine-continuation! cc)
           r)))))

It remains to be seen how those two primitives can be 
implemented.
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Continuation representation

Where are machine continuations stored? In other words, 
where is the information necessary to return from a 
function call – return address, register contents – stored?

The answer depends on the machine being used, and on 
calling conventions.

In the simplest case, all that information is stored on the 
stack before a function call. Therefore, the frame pointer 
represents the continuation of a function!

In more complex cases, the information is stored both in 
the stack and in callee-saved registers. Some more work is 
necessary to save and restore continuations, but the basic 
idea is the same.
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The stack
In a language without first-class continuations, the 
following two properties are true:

• continuations are saved and resumed in LIFO order,

• continuations can only be resumed once, which implies 
that they can be freed after having been resumed.

These properties make it possible to use a stack to store 
continuations. Unfortunately, they do not hold for 
languages with first-class continuations!

Implementations of such languages either abandon the 
stack completely and allocate all activation frames on the 
heap, or lazily copy those frames from the stack to the heap 
when continuations are saved.
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Technique #2:
continuation-passing style



Continuations “by hand”

What can we do if we want to use continuations but the 
language we use doesn’t offer them?

One idea is to transform the program to explicitly represent 
continuations using functions.

A program is said to be in continuation-passing style (CPS) 
if:

• all functions receive a continuation as an additional 
argument, and

• they invoke that continuation with their result instead of 
returning that result to the caller – i.e. no function ever 
returns.
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CPS example

To illustrate CPS, we will use the following simplified 
variant of our adder program:

(print-int (+ (read-int) (read-int)))

To transform this program to CPS, we need to use functions 
to represent the current continuation at all possible points 
of its execution: just after reading the first integer, after 
reading the second, etc.
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CPS example
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(print-int (+ (read-int) (read-int)))

(read-int/cps
 (lambda (n1)
   (read-int/cps
    (lambda (n2)
      (+/cps n1 n2
             (lambda (sum)
               (print-int sum)))))))

C
PSCPS version of 

read-int

CPS 
version of +



Primordial continuation
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In the CPS version of our example, we cheated by using the 
normal version of print-int. Rigourously, we should 
have used the CPS version. But what continuation should it 
get?

More generally, what is the primordial continuation, i.e. 
the continuation of a complete program? A function halting 
execution is a good choice, which could be defined as 
follows given a halt primitive:

(lambda (res) (halt))



Defining call/cc/cps

As long as the program is not in CPS, it is not possible to 
define call/cc, which must be a primitive.

However, as soon as the program is in CPS, defining the 
CPS version of call/cc – i.e. call/cc/cps – is 
relatively simple.

To define it, it is useful to remember that the goal of call/
cc/cps is to reify the current continuation by making it 
available as a standard (CPS) function.

That function, when applied to an argument x, should 
invoke the continuation that was current at the time when 
call/cc/cps was invoked, passing it x, and ignore the 
current continuation.
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Defining call/cc/cps

The definition of call/cc/cps is:

(define call/cc/cps
  (lambda (f k)
    (f (lambda (res ignored-k) (k res))
       k)))

Notice how the reified continuation ignores the current 
continuation (ignored-k) and uses the captured one (k) 
instead.
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CPS conversion
for minischeme



CPS conversion

As we have seen, we can offer continuations by first 
transforming the program to CPS, and then providing an 
implementation of call/cc/cps.

Doing this transformation by hand is tiresome and error-
prone, the compiler should do it for us!

This is the idea of CPS conversion, which will be presented 
here as a function K mapping minischeme terms to 
equivalent terms in CPS.
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Simplified minischeme

To simplify the presentation, we will define CPS conversion 
for a version of minischeme restricted as follows:

• the body of a lambda expression is composed of a 
single expression,

• all functions take exactly one argument,

• there is no let expression, as it is only syntactic sugar:
(let ((v1 e1) …) b1 …)
  ⇔ ((lambda (v1 …) b1 …) e1 …)

Removing those restrictions is relatively easy, and left as an 
exercise.
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Conversion outline

The basic idea of CPS conversion is to translate terms to 
functions that expect a continuation and invoke that 
continuation with the value of the term.

Therefore, all terms are translated to an expression with the 
following structure:

  (λ (k) some expression using k)
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CPS for minischeme
K[v] =
  (λ (k) (k v))

K[(if c t e)] =
  (λ (k) (K[c] (λ (cv) (if cv (K[t] k) (K[e] k)))))

K[(λ (x) b)] =
  (λ (k) (k (λ (x k2) (K[b] k2))))

K[(f x)] =
  (λ (k)
    (K[f] (λ (fv) (K[x] (λ (xv) (fv xv k))))))

K[(p x y)] when p is a primitive =
  (λ (k)
    (K[x] (λ (xv) (K[y] (λ (yv) (p xv yv))))))
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Example translation
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(print-int (+ (read-int) (read-int)))

K

much more 
complicated, but 

equivalent to what 
we would obtain 

by hand

(lambda (k1)
  ((lambda (k2) (k2 print-int/cps))
   (lambda (fv1)
     ((lambda (k3)
        ((lambda (k4)
           ((lambda (k5)
              (k5 read-int/cps))
            (lambda (fv2) (fv2 k4))))
         (lambda (xv1)
           ((lambda (k6)
              ((lambda (k7) (k7 read-int/cps))
               (lambda (fv3) (fv3 k6))))
            (lambda (yv) (k3 (+ xv1 yv)))))))
      (lambda (xv2) (fv1 xv2 k1))))))



Improving the translation
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The previous examples make it clear that the translation we 
defined generates much more complex code than the one 
we obtained by hand earlier.

Other, more complicated translations to CPS can be 
defined in order to produce simpler code. We will not 
cover them here, however.



Summary

Continuations are the “ultimate” control operator. They can 
be used to implement many powerful concepts like threads, 
exceptions, etc.

Continuations can either be implemented in the virtual 
machine – basically by copying the stack – or by a 
transformation of the program to continuation-passing style 
(CPS), done by the compiler.

One important characteristic of CPS is that all calls are tail 
calls.
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