
Minischeme project

Michel Schinz & Iulian Dragos
2007–03–16

The project

What you get:

• a compiler for minischeme, written in Scala,

• a virtual machine, written in C.

What you have to do:

• improve the compiler and the VM, e.g. by adding a
garbage collector and various optimisations.

2

The minischeme language

Minischeme is a dialect of Scheme, itself a dialect of Lisp.
Its main characteristics are:

• it is untyped – unlike Scheme, which is dynamically
typed,

• it has few side effects (exceptions: arrays, input/output),

• it is functional: functions are first-class values,

• it is very simple, with only four keywords (define,
let, lambda and if).

3

The minischeme language

(define name expr)

Global value definition, binding the value of expr to the
name, only valid at the top level.

Global values are visible in the whole program, but are
initialised in the order in which they are written.

(let ((name1 expr1) …) body1 …)

Local value(s) definition: name1 is bound to the value of
expr1, name2 to the value of expr2, etc. while body1 … is
evaluated. The value of the whole expression is the value
of bodym.

Note: the names name1…n are only visible in body1…m,
not in expr1…n

4

The minischeme language

(lambda (name1 …) body1 …)

Anonymous function, with parameters name1 ... namen
and body body1 ... bodym.

(if exprcond exprthen exprelse)

Conditional: evaluate exprelse iff exprcond evaluates to 0,
otherwise evaluate exprthen.

(exprfun expr1 …)

Function application: call exprfun with expr1 … exprn as
arguments.

5

Minischeme example

Function to compute xy on integers (y must be positive):

(define pow

 (lambda (x y)

 (if (= 0 y)

 1

 (if (= 0 (% y 2))

 (let ((z (pow x (/ y 2))))

 (* z z))

 (* x (pow x (- y 1)))))))

6

Minischeme primitives

Minischeme is equipped with the following primitives,
most of which correspond directly to one VM instruction:

• Arithmetic primitives: +, -, *, /, %

• Logical primitives: <, <=, =

• Vector primitives: vector, vector-ref, vector-set!

• Input/ouput primitives: read-int, print-int,
read-char, print-char

Primitives are invoked using the syntax of function
application, for example: (* 6 (+ 4 3))

However, it is important to understand that primitives are
not functions. In particular, primitives cannot be
manipulated as values, while functions can.

7

Eta-expansion

Since primitives cannot be manipulated as values, the
following definition should in principle not be accepted:

(define plus +)

However, the minischeme compiler performs a
transformation known as eta-expansion to transform the
above code into the following, legal one:

(define plus (lambda (a1 a2) (+ a1 a2)))

In summary, the aim of eta-expansion is that whenever the
programmer tries to use a primitive as a value, that
primitive is replaced by an equivalent anonymous function.
This guarantees that primitives are never used as values.

8

Minischeme vectors

Minischeme provides three primitives to work with vectors
(a.k.a. arrays):

• (vector e1 … en) creates a vector of n elements,
initialised with the values of e1 …!en.

• (vector-ref v n) returns the nth element of v.
Indexing is 0-based, and no bounds checking is done!

• (vector-set! v n e) sets the nth element of v to
the value of e.

Notice that vector accepts a variable number of
expressions. Since minischeme does not provide the
concept of functions with a variable number of parameters,
it is the only primitive that cannot be eta-expanded.

9

Pairs in minischeme

Pairs can easily be represented using vectors:

;; construct a pair

(define cons

 (lambda (f s)

 (vector f s)))

;; get first component

(define car (lambda (p) (vector-ref p 0)))

;; get second component

(define cdr (lambda (p) (vector-ref p 1)))

Note: the names cons, car and cdr are historical.

10

Lists in minischeme

Lists can easily be represented using pairs: the first
component of the pair represents the head of the list, and
the second component represents its tail, which is another
list. The empty list is represented by 0.

This representation of lists by pairs is used in most
functional languages.

For example, the list 1,2,3,4 can be constructed by the
following code:
(cons 1 (cons 2 (cons 3 (cons 4 0))))

and its second element can be accessed by the following
code, where lst represents the list:
(car (cdr lst))

11

Characters and strings

The minischeme compiler defines some syntactic sugar for
characters and strings.

A character c is written #\c and is translated to the ASCII
code of c. For example, #\A is translated to 65.

A string s is written "s" and is translated to the list of the
ASCII codes of its characters. For example, "Hello" is
translated to:
(cons 72

 (cons 101

 (cons 108

 (cons 108

 (cons 111 0)))))

12

The minivm virtual machine

Minivm is a virtual machine designed for this project. Its
main characteristics are:

• it is register-based,

• it is very simple, with only 17 instructions,

• it accepts textual assembly code as input.

The design goals were:

• to have a simple, easy to implement machine,

• to have it resemble a real processor, to make the
compiler realistic.

However, this machine is definitely not an ideal target for a
Scheme compiler!

13

Minivm registers

Minivm has 32 general-purpose registers, named R0…R31,
and a program counter (PC).

In the project, we will assign specific roles to:

R0 – holds the constant 0,

R29 – holds the return address (LK),

R30 – points to the current stack frame (FP),

R31 – points to the global variables area (GP), containing
all global values.

Notice that these are just conventions used by the compiler,
that are in no way enforced by the VM itself!

14

Calling conventions

15

Function arguments are passed in registers R1…R28.

Functions with more than 28 – 27, actually – arguments are
not supported yet. They could be supported by passing
some of the arguments on the stack, though.

The return value is put in R1.

Memory organisation
All memory used by programs is dynamically allocated
from a single heap. In other words, even stack frames used
to store local variables are allocated from the heap, and
explicitly linked together.

16

75

1074

…

R30 (FP)

R31 (GP)

…

42

1175 1 2 3

0

Heap

Registers

stack
frame

Minivm instructions

The minivm instruction set can be categorised as follows:

• Arithmetic: ADD, SUB, MUL, DIV, MOD

• Control: ISLT, ISLE, ISEQ, JMPZ

• Memory: ALOC, LOAD, STOR, LINT

• Input/output: RINT, PINT, RCHR, PCHR

17

Arithmetic instructions

18

ADD Ra Rb Rc Ra ! Rb + Rc

SUB Ra Rb Rc Ra ! Rb - Rc

MUL Ra Rb Rc Ra ! Rb * Rc

DIV Ra Rb Rc Ra ! Rb / Rc

MOD Ra Rb Rc Ra ! Rb mod Rc

Control instructions

19

ISLT Ra Rb Rc Ra ! Rb < Rc [false: 0, true: 1]

ISLE Ra Rb Rc Ra ! Rb " Rc [false: 0, true: 1]

ISEQ Ra Rb Rc Ra ! Rb = Rc [false: 0, true: 1]

JMPZ Ra Rb if Rb = 0 then PC ! Ra

Memory instructions

20

LINT Ra C Ra ! C

LOAD Ra Rb C Ra ! Mem[Rb + C]

STOR Ra Rb C Mem[Rb + C] ! Ra

ALOC Ra Rb Ra ! new block of Rb bytes

I/O instructions

21

RINT R R ! read integer from input

PINT R print R on output

RCHR R R ! read character from input

PCHR R print char(R) on output

Minivm code example

22

fact: LINT R2 else

 JMPZ R2 R1

 LINT R2 12

 ALOC R2 R2

 STOR R30 R2 0

 STOR R29 R2 4

 STOR R1 R2 8

 ADD R30 R2 R0

 LINT R2 1

 SUB R1 R1 R2

 LINT R29 ret

 LINT R2 fact

 JMPZ R2 R0

ret: LOAD R2 R30 8

 MUL R1 R1 R2

 LOAD R2 R30 4

 LOAD R30 R30 0

 JMPZ R2 R0

else: LINT R1 1

 JMPZ R29 R0

allocate,
initialise and

link frame

perform
recursive call

unlink
frame and

return

compute
result

The minischeme compiler

23

We give you a working implementation (in Scala) of a
minischeme compiler, with the following limitations:

• anonymous functions are only allowed at the top-level
(i.e. no closures),

• the produced code is not very good.

Your job will be to remove these, and other, limitations
later.

Compiler organisation

24

Scanner

Parser

Name analyser

Code generator

tokens

tree

attributed tree

minivm code

Scanner

Token

Generator

NameAnalyzer

Code, Label,

Instruction,

Opcode,

Register

Symbol

Tree

Parser
Main

Minivm implementation

We give you a working implementation (in C) of minivm,
with the following limitations:

• no garbage collector: memory is never freed, and the
VM exits when all available memory has been used,

• not as efficient as it could be.

Once again, your job will be to improve it!

25

Minivm overview

The parser analyses assembler files, resolves labels and
produces a binary version of the program in memory; that
binary version is accessed by the emulator.

The emulator interprets the program. It can run
interactively, and wait for user input after each step.

The memory manager allocates and reclaims (rather, will
reclaim) memory in the heap area.

26

Project overview

The project will start with a set of assignments which all
groups will have to complete :

• two small warm-up exercises (not graded),

• a “mark-and-sweep” garbage collector,

• closure conversion,

• tail call elimination.

27

Project overview

After the assignments, every group will have to choose and
complete one advanced project:

• a precise, copying garbage collector,

• a JIT compiler for the virtual machine,

• advanced optimisations,

• a linear-scan register allocator,

• etc.

28

Project grading

At the end of each assignment, you will have to send us
your code electronically (using moodle).

At the end of the advanced project, you will have to present
your work either through a small written report, or a short
oral presentation – depending on the number of students
attending the course.

29

