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SUMMARY

In a virtual machine interpreter, the code for each virtual machine
instruction has similarities to code for other instructions. We present an
interpreter generator that takes simple virtual machine instruction de-
scriptions as input and generates C code for processing the instructions
in several ways: execution, virtual machine code generation, disassembly,
tracing, and profiling. The generator is designed to support efficient in-
terpreters: it supports threaded code, caching the top-of-stack item in a
register, combining simple instructions into superinstructions, and other
optimizations. We have used the generator to create interpreters for Forth
and Java. The resulting interpreters are faster than other interpreters for
the same languages and they are typically 2-10 times slower than code
produced by native-code compilers. We also present results for the effects
of the individual optimizations supported by the generator.

KEY WORDS: interpreter; virtual machine; generator; stack architecture;
superinstruction; byte code

1 Introduction

Interpreters are a popular approach for implementing programming languages.
Several advantages make interpreters attractive:

e Ease of implementation.
e Portability.

e Fast edit-compile-run cycle.

While other implementation techniques provide one or two of these advan-
tages, only interpreters provide all three.

A popular choice when implementing interpreters is to use a virtual machine
(VM), i.e., an intermediate representation with many similarities to real machine
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code?; in particular, VM code consists of a sequence of VM instructions. In
such designs the interpretive system is divided into a front end, i.e., a compiler
that produces VM code, and a VM interpreter that executes this code. The
advantages of this approach are efficiency (the VM is usually designed to be
interpreted with minimal interpreter overhead), and a clean interface between
modules of the interpretive system. Well-known examples of virtual machines
are Java’s JVM [LY99], Prolog’s WAM [AK91], and Smalltalk’s VM [GR83].

Virtual machines are often designed as stack architectures, for two reasons:
1) It is easy to generate stack-based code from most languages; 2) stack-based
VM instructions require less decoding overhead than register-based VM instruc-
tions and therefore execute faster [Ert95].

1.1 Automation

When creating a VM interpreter, there are many repetitive pieces of code: The
code for executing one VM instruction has similarities with code for executing
other VM instructions (get arguments, store results, dispatch next instruction);
likewise for VM disassembly and VM code generation. Moreover, the code for
dealing with one VM instruction is distributed across several places: VM inter-
preter engine, VM disassembler, and VM code generation support functions. If
you want to change or add a VM instruction, typically all of these places have
to be updated. These issues suggest generating the code for processing VM
instructions from a common VM instruction description.

In this paper we present such a generator: vmgen. From a single, simple VM
instruction description file (Section 3) it generates C code for:

e Executing the instruction (with operand access, debugging support, and
instruction dispatch generated automatically; see Section 4.1-4.3).

e Routines for generating VM code (to be used in the front end of the
interpretive system; see Section 4.5).

e Disassembling the VM code (useful in debugging the front end; see Sec-
tion 4.6).

e Profiling VM instruction sequences (Section 4.7).

e Combining instructions into superinstructions (Section 4.8).

Vmgen has special support for stack-based VMs. It has no special support
for register-based VMs, but most of its features are also useful when working on
such VMs; only stack operand access generation and stack access optimizations
are useless for register VMs.

1.2 Efficiency

In addition to reducing the work of writing and maintaining an interpreter,
vmgen makes it easy to write fast interpreters by supporting efficient implemen-
tation techniques and a number of optimizations.

aThis is the usual meaning of virtual machine in interpreter construction (first item in
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?virtual+machine).



VM Code VM instruction routines

imul Machine code for imul
iadd k‘ Dispatch next instruction
iadd Machine code for iadd

Dispatch next instruction

GNU C Alpha assembly

next_inst = *ip; 1ldq s2,0(sl) ;load next VM instruction

ip++; addq s1,0x8,s1 ;increment VM instruction pointer
goto *next_inst; jmp (s2) ;jump to next VM instruction

Figure 1: Threaded code: VM code representation and instruction dispatch

Some might argue that efficiency is not important in interpreters because
they are slow anyway. However, this attitude can lead to an interpreter that is
more than a factor of 1000 slower than native code produced by an optimizing
compiler [RLVT96], whereas the slowdown for efficient interpreters is only a
factor of 10 [HATvdW99]. That is, the difference between a slow and a fast
interpreter is larger than the difference between a fast interpreter and native
code.

Another argument is that interpreted programs spend much of their time in
native-code libraries, so speeding up the interpretive engine will not provide a
speedup to these programs. However, the amount of time spent in libraries is
not necessarily known at the start of a project, and the prospect of a > 1000
slowdown (if the library does not cover everything and a significant amount of
computation has to be performed using simple operations) is daunting. More-
over, having an efficient interpreter increases the number of applications where
the library dominates run-time. For example, consider an application that would
spend 99% of its time in libraries when compiled with an optimizing native code
compiler: with an efficient interpreter it will spend 90% of the time in the li-
brary (for an overall slowdown of 1.1 over optimized native code), whereas with
an inefficient interpreter it will spend less than 10% of its time in the library
(for an overall slowdown of > 10).

Vmgen supports the following techniques and optimizations for writing effi-
cient interpreters:

e Threaded code (Section 1.3).

Scheduling the dispatch of the next VM instruction (Section 5.1).

Keeping the top-of-stack in a register (Section 5.2).

Combining VM instructions into superinstructions (Section 4.3 and 4.8).

Eliminating stores of unchanged stack items (Section 5.3).

e Improving branch prediction accuracy (Section 5.4).



1.3 Threaded code

Threaded code [Bel73] represents a VM instruction as address of the routine
that implements the instruction. In threaded code the code for dispatching the
next instruction consists of fetching the VM instruction, jumping to the fetched
address, and incrementing the instruction pointer. This technique cannot be
implemented in ANSI C, but it can be implemented in GNU C using the labels-
as-values extension. Figure 1 shows threaded code and the instruction dispatch
sequence.

Another popular technique for implementing VM interpreters represents a
VM instruction as an integer (often byte-sized) and uses a C switch statement
for dispatch.

The advantages of threaded code over switch dispatch are a short, fast in-
struction dispatch sequence and better branch prediction accuracy on machines
with branch target buffers [EG01]. A disadvantage of threaded code compared
with bytecode is the larger VM code size.

2 Vmgen overview

Figure 2 shows how the source files for a vmgen-based interpreter are compiled,
and the generated files involved. The input to vmgen is a .vmg file that con-
tains type and stack definitions and instruction specifications (see Section 3 for
details). Vmgen outputs six files containing C code; most of these files must be
#included in a wrapper C function®.

Vmgen comes with an example, and the example’s wrapper files can usually
be used with few changes; the exception to this rule is compiler.c, which
contains the front-end of the interpretive system and therefore is quite different
for different languages.

If the interpreter is compiled with VM profiling enabled, running the inter-
preter produces a VM profile in addition to the usual results; this VM profile
is useful for selecting which VM instruction sequences should be combined into
superinstructions.

3 Input

Figure 3 shows a simplified grammar for vmgen’s input language. Figure 4
shows a complete (but not very useful) vmgen-style virtual machine specification,
explained in the following.

3.1 Simple instruction specifications

A typical example for a simple instruction description is the JVM instruction
iadd:

iadd ( i1 i2 -- 1)
1= 11+41i2;

bWe use the extension .i (for include), because the commonly used extension .h (for
header) indicates declarations and macro definitions.



x-vm.i  x-labels.i x-disasm.i X-gen.i x-profile.i  x-peephole.i

engine.c disasm.c compllerc profil\e.c peephole.c
| cc L cc |

’

engine.o disasm.o compller o profile.o peephole.o /

interpreter
profile .-~
wrapper generated
file description

X.ving input: VM description (Section 3)
engine.c X-vin.i VM instruction execution (Section 4.1-4.3)
engine.c x-labels.i VM instruction address array (Section 4.4)
disasm.c x-disasm.i VM code disassembler (Section 4.6)
compiler.c  x-gen.i VM code generation (Section 4.5)
profile.c x-profile.c VM instruction sequence profiling (Section 4.7)
peephole.c  x-peephole.c | superinstruction tables (Section 4.8)

Figure 2: Files and processing steps in interpreter generation

Vmgen extracts a lot of information from the first line of the instruction
specification, and generates a lot of code from it, whereas the C-code part is
just used almost verbatim in one of the generated files.

In particular, the parenthesized part in the first line (the stack effect) con-
tains a lot of information: the number of items popped from and pushed on the
stacks, their order, their stack, their type, and by what name they are referred
to in the C code. In our example, iadd pops the two integers i1 and i2 from
the data stack, executes the C code, and then pushes the integer i on the data
stack.

The stack effect is responsible for a lot of generated code: for declaring
C variables for the stack items, for accessing the arguments and results, for



->
->

description
simple_inst

stack_effect ->
super_inst ->

comment ->
escape ->
stack_def ->

stack_prefix ->

{simple_inst|super_inst|comment |escape}

inst_id ’ (’ stack_effect ’)’ newline

C_code newline newline

{item_id} ’--’> {item_id}

inst_id ’ =’ {inst_id} newline

’\ ’ comment_string newline

’\E ’ (stack_def|stack_prefix|type_prefix) newline
’stack’ stack_id pointer_id c_type_id

stack_id ’stack-prefix’ prefix_id

type_prefix -> ’s" ’ type_string ’"’ (’single’|’double’) stack_id

’type-prefix’ prefix_id

Figure 3: Simplified EBNF grammar for vmgen input

\ stack definitions:
\E stack data-stack sp Cell

\ stack prefix definitions:
\E inst-stream stack-prefix #

\ type prefix definitions:
\E s" int" single data-stack type-prefix i

\ simple instruction definitions:
iadd ( i1 i2 -- 1)
i = i1+i2;

ipush ( #i -- 1)

\ superinstruction definitions:
ipush_iadd = ipush iadd

Figure 4: A simple virtual machine specification

outputting the arguments and results in traces, and for dealing with immediate
arguments in VM code generation and disassembly.

3.2 Special macros

The user-supplied C code can contain a few macros with special meaning to
vmgen.

SET_IP This macro sets the VM instruction pointer. It is used for implementing
VM branches. It also indicates the end of a VM-code basic block for
profiling.

SUPER_END Use this for ending a basic block in an instruction without SET_IP
(for profiling, see Section 4.7). For example, our JVM implementation
uses SUPER_END in VM instructions that return from the engine.



TAIL This macro indicates that the execution of the current VM instruction
ends and the next one should be invoked. Using this macro is only nec-
essary if you want to do this in the middle of the user-supplied C code;
vmgen automatically appends this code at the end without needing TAIL
there. Vmgen itself expands TAIL.

As an example of the use of these macros, consider a conditional branch:

ifeq ( #aTarget i -- )
if (i==0) {

SET_IP(aTarget); TAIL;
}

The # prefix indicates an immediate argument (see Section 3.4). To improve
branch prediction accuracy, we use TAIL here instead of falling through to the
end (see Section 5.4).

3.3 Types

The type of a stack item is specified through its prefix, like in Hungarian notation
or Fortran. In our example, all stack items have the prefix i that indicates a
32-bit integer. The types and their prefixes are specified at the start of the .vmg
file, like this:

\E s" int" single data-stack type-prefix i

The s" int" indicates the C type of the prefix (int), single indicates that
this type takes only one slot on the stack (currently vmgen supports types taking
one or two slots), data-stack is the default stack for stack items of that type
(see Section 3.4), and 1i is the name of the prefix. If there are several matching
prefixes, the longest one is used.

3.4 Stacks

Vmgen supports virtual machines with several stacks. It also treats the instruc-
tion stream like a stack in some respects; this approach is a convenient way
to automate the treatment of immediate arguments. Accesses to a non-default
stack are specified by a prefix that is not part of the name of the argument.
For example, consider the code for the VM instruction ipush® that pushes a
constant on the stack:

ipush ( #i -- 1)

Here # is the prefix for the instruction stream?. ipush just takes the value i

from the instruction stream and pushes it on the stack.
You define a stack like this:

\E stack data-stack sp Cell

€A generalization of the JVM instructions bipush and sipush.
dinspired by the 6800/6502/68000 immediate addressing mode syntax



data-stack is the name of the stack (prefix definitions refer to that name),
sp is the name of the stack pointer, Cell is the C type of a generic stack item
(i.e., the type that the stack pointer points to). The instruction stream works
somewhat differently from the other stacks and is therefore predefined (stack
pointer IP, type Cell).

You define a stack prefix like this:

\E inst-stream stack-prefix #

inst-streamis the name of the stack (this stack is predefined), and # is its
prefix.

The conversion between the generic stack item type and the type of a par-
ticular stack item is performed by conversion macros when accessing the stack
item (see Section 4.1).

3.5 Superinstructions

A superinstruction performs the work of a sequence of simple instructions. It is
defined like this:

ipush_iadd = ipush iadd

ipush_iadd is the name of the superinstruction, ipush and iadd are the
names of the component instructions; there can be arbitrarily many components.

3.6 Virtual register machines

There are two ways to use vmgen for defining a register VM:
The direct way is to define instructions that take register numbers as imme-
diate arguments and do not use stacks at all:

add ( #isrcl #isrc2 #idest -- )
reglidest] = reglisrcl] + reglisrc2];

The indirect way is to define a hybrid stack/register VM where the only
register accesses are transfers between the registers and the stacks; full register
instructions are defined as superinstructions:

load ( #isrc -- i)
i = reglisrc];

store ( i #idest —— )
reglidest] = 1i;

add = load load iadd store

The advantages of the indirect approach are that vmgen’s tracing feature
produces more useful output (it reports the values loaded from and stored to
registers), and that it is easier to deal with instructions specialized for hard-
coded registers (e.g., load_r1).

Of course, once you are using a hybrid stack/register VM, you might choose
to use the stack instead of registers for short-lived intermediate results, and use
profiling to decide which sequences should become superinstructions, resulting
in a best-of-both-worlds VM.



I_iadd: { /* label */

int i1; /* declarations of stack items */

int i2;

int 1i;

NEXT_PO; /* dispatch next instruction (part 0) */

il = vm_Cell2i(sp[1]); /* fetch argument stack items */

i2 = vm_Cell2i(spT0S);

sp += 1; /* stack pointer updates */

{ /* user-provided C code */

#line 6 "mini.vmg"

i = 11+4i2;

}

NEXT_P1; /* dispatch next instruction (part 1) */
spTOS = vm_i2Cell(i); /* store result stack item(s) */
NEXT_P2; /* dispatch next instruction (part 2) */
}

Figure 5: Simplified version of the code generated for the iadd VM instruction
in the *-vm.1i file (see text for a description)

4 Output

4.1 Interpreter engine

Figure 5 shows a simplified and commented version of the *-vm.1i output that
vmgen generates for the iadd VM instruction. It starts with the label of the VM
instruction. Then the stack items used by the instruction are declared. NEXT_PO,
NEXT_P1, and NEXT_P2 are macros for the instruction dispatch sequence. The
assignments following NEXT PO are the stack accesses for the arguments of the
VM instruction. Then the stack pointer is updated (the stacks grow towards
lower addresses). The next piece of code is the C code from the instruction
specification. After that, apart from the dispatch code there is only the stack
access for the result of the instruction.

The stack accesses to the top-of-stack use spT0S instead of sp[0] to enable
top-of-stack caching (see Section 5.2).

vm_Cell2i and vm_i2Cell are macros for changing the type of the stack
item from the generic type to the type of the actual stack item; they have to
be defined in the C program that #includes this *-vm.1 file; we have defined
Cell to be an integer type and have used casts for most of these macros (an
alternative would be to define Cell as a union).

This C code looks long and inefficient (and the complete version is even
longer), but GCC optimizes it quite well and produces the optimal code shown
in Fig. 6 on the Alpha architecture. It also produces optimal code for iadd for
most architectures we looked at.

4.2 Debugging

A typical C debugger is not very well suited for debugging an interpreter because
the C debugger works at a too-low level and does not know anything about the



1dl t0,8(s3) ;il = vm_Cell2i(sp[1]);

ldq s2,0(s1) ;load next VM instruction

addq s3,0x8,s83 ;sp += 1;

addq s1,0x8,s1 ;increment VM instruction pointer
addl t0,s4,s4 ;i = i1+i2;

jmp (s2) ;jump to next VM instruction

Figure 6: Alpha code produced for iadd

I_iadd:

NAME("iadd") /* print VM inst. name and some VM registers */

o /* fetch stack items */

#ifdef VM_DEBUG

if (vm_debug) {
fputs(" il=", vm_out); printarg_i(il); /* print arguments */
fputs(" i2=", vm_out); printarg_i(i2);

}

#endif

. /* user-provided C code */

#ifdef VM_DEBUG

if (vm_debug) {
fputs(" -- ", vm_out); /* print result(s) */
fputs(" i=", vm_out); printarg_i(i);
fputc(’\n’, vm_out);

}

#endif

/* store stack items; dispatch */

Figure 7: Tracing code generated for the iadd VM instruction in the *-vm.i
file (see text for a description)

interpreted program; e.g., stepping through the interpreter is tedious, and the C
debugger does not offer support for stepping through the interpreted program.

Vmgen supports debugging at the VM level in two ways: through a VM
disassembler (see Section 4.6) and a trace mechanism (described in this section).

Note that debugging at the VM level is useful for debugging the interpretive
system, but not usually for debugging the end-user’s program, so the inter-
preter writer may want to provide additional facilities for debugging end-user
programs.

Figure 7 shows the tracing code that we left out of Fig. 5. NAME is a macro
to output the instruction name and the contents of interesting VM registers
(e.g., the instruction pointer and the stack pointers). The trace is written to
the file vm_out and thus can be directed anywhere without upsetting stdout
or stderr. The user defines the printarg._ functions and can thus control how
the arguments and results are displayed (useful for types like functions that are
better displayed symbolically).

The tracing outputs are surrounded by #ifdefs to avoid influencing the
code quality for the non-debugging version of the interpreter; they are also

10



I_ipush_iadd:

{

Cell _IPO; /* synthetic names for stack item vars */
Cell _spO;

Cell _spi;

NEXT_PO;

_IPO = vm_Cell2Cell(IPT0S); /* fetch superinstruction arguments */
_sp0 = vm_Cell2Cell (spT0S);

INC_IP(1); /* stack pointer update(s) */
/* ipush ( #i -- i ) */ /* component instruction ipush */
{
int i; /* declare ipush stack items */
i = vm_Cell2i(_IPO); /* fetch ipush argument */
{ /* ipush user-supplied C code */
}
_spl = vm_i2Cell(i); /* store ipush result */
}
/% iadd ( il i2 —- i ) */ /* component instruction iadd */
{
int i1; /* declare iadd stack items */
int i2;
int i;
i1 = vm_Cell2i(_sp0); /* fetch iadd arguments */
i2 = vm_Cell2i(_spl);
{ /* iadd user-supplied C code */
1= 11+i2;
}
_sp0 = vm_i2Cell(i); /* store iadd result */
}
NEXT_P1;

spT0S = vm_Cell2Cell(_sp0); /* store superinstruction result */
NEXT_P2;
}

Figure 8: Simplified version of the code generated for the ipush_iadd superin-
struction in the *-vm.1 file (see text for a description)

surrounded by if (vm_debug) to allow switching tracing on and off at run-time
(e.g., from the C debugger).

4.3 Superinstructions

Figure 8 shows the code that vmgen produces for the superinstruction ipush_iadd
It introduces additional variables for all the stack items involved in the superin-
struction, loads the arguments into these variables at the start, stores the results
from these arguments at the end, and performs combined stack pointer updates
at the start (in our example, there is no overall change of sp, so only IP is
updated, using the INC_IP macro).

The code generated for each component instruction of a superinstruction is

11



ldq t0,0(s1) ;_IPO = vm_Cell2Cell (IPTOS)

ldq s2,8(s1) ;load next VM instruction

addq s1,0x10,s1 ;increment VM instruction pointer
addl t0,s4,s4 ;i = i1+i2;

jmp (s2) ;jump to next VM instruction

Figure 9: Alpha code produced for ipush_iadd

similar to the code generated for the same instruction as a simple instruction,
but the arguments are fetched from and the results are stored to the stack item
variables of the superinstruction, there are no stack pointer updates and no
instruction dispatch code.

This approach relies heavily on the optimization capabilities of the C com-
piler, in particular copy propagation. Fortunately, GCC is quite good at that,
as shown in Fig. 9. The code is even shorter than the code for iadd, because sp
is not updated. As you can see, combining instructions into a superinstruction
not only optimizes dispatches away, but also stack accesses and stack pointer
updates.

The debugging code (not shown) is inserted into the component instructions,
not the superinstruction; the advantages of this approach are that the arguments
and results are reported with meaningful names and that the output is the same
(and, e.g., comparable with diff) whether or not instructions are combined into
superinstructions; the disadvantage is that the superinstructions are not visible
in the debugging output.

4.4 Labels

We implement threaded code using GNU C’s labels-as-values feature. One prob-
lem with this approach is that the labels are only visible in the function con-
taining the interpreter engine. However, we also need to know these labels in
the functions that generate the VM code.

Our solution is to store all the labels in an array, and return the array from a
special call to the engine function, so that they can be globally accessed, through
the variable vm_inst.©

Vmgen supports this approach by generating the contents of the array ini-
tializer in the file *-1abels.i. For example, for iadd it generates

(Label)&&I_iadd,
This is the GNU C syntax for the address of the label I_iadd.

4.5 VM code generation support

Vmgen generates functions for generating VM code in the file *-gen.i. For
example, here is the function to generate an ipush instruction (ipush pushes
a constant on the stack; it takes an immediate argument and is therefore a bit
more interesting than iadd):

°Of course, any goto to any of these labels must still occur from within the engine function.
They are passed outside in order to avoid having to put all the VM code generation code into
the engine function.

12



void gen_ipush(Inst **ctp, int i)
{
gen_inst(ctp, vm_inst[1]);
genarg_i(ctp, 1);
}

There is a pointer to the end of the generated code (pointed to by ctp),
which is incremented by gen_inst and genarg-i. vm_inst[1] contains the
label I_ipush.

The advantages of providing these functions are: The front end can use a
symbolic name instead of having to refer to vm_inst[1] etc., increasing read-
ability and maintainability; passing an immediate argument to such a function
increases readability; and the type checker of the C compiler can check the
number and types of the arguments.

The following example shows how these functions might be used in a front-
end written in yacc:

expr: num { gen_ipush(&p, $1); }
| expr ’+’ expr { gen_iadd(&p); }

4.6 Disassembler

Having a VM disassembler is useful for debugging the front end of the inter-
pretive system. All the information necessary for VM disassembly is present in
the instruction descriptions, so vmgen generates the instruction-specific parts
automatically:

if (ip[0] == vm_inst[1]) {
fputs("ipush", vm_out);
fputc(’ ’, vm_out); printarg_i((int)ip[1]);
ip += 2;
goto _endif_;

This example shows the code generated for disassembling the VM instruction
ipush. The if condition tests whether the current instruction (ip[0]) is ipush
(vm_inst[1]). If so, it prints the name of the instruction and its arguments,
and sets ip to point to the next instruction. Printing the instruction’s address
can be done in the enclosing loop.

The sequence of ifs results in a linear search of the existing VM instructions;
we chose this approach for its simplicity and because the disassembler is not
time-critical.f

4.7 Profiling

Vmgen supports profiling at the VM level. The goal is to provide information to
the interpreter writer about frequently-occurring (both statically and dynami-
cally) sequences of VM instructions. The interpreter writer can then use this
information to select sequences for combining them into superinstructions.

fThe if ends with a goto _endif_ instead of an else because a long else if cascade
overruns the parser stack of GCC (after about 2000 else ifs). We cannot use switch instead,
because vm_inst[1] is not a valid case label.
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The approach to profiling taken here is to record how often the VM control
flow branches to each VM branch target. For conditional branches, the fall-
through path is also counted as a branch target. At the end of the run, the
counts of VM basic blocks entered by fall-through (without a conditional branch)
are corrected, the basic blocks are disassembled, and their subsequences are
output with attached execution frequencies. There are scripts for aggregating
this output into totals for static occurences and dynamic execution frequencies,
and to process them into superinstruction rules for the .vmg file. This branch-
target counting approach is quite fast (slowdown factor a2 2), so you can profile
long-running applications.

The support for profiling comes in several parts:

e The file profile.c contains most of the routines used by profiling.

e The code produced for a VM branch (a VM instruction with SET_IP)
contains a call to SUPER_END near the end; so the interpreter writer just
needs to define SUPER_END as vm_count_block (IP) for the profiling version
of the interpreter.

e Vmgen generates the file *-profile.i which performs the disassembling
for profile.c.

The *-profile.i code for an instruction is similar to the disassembler code:

if (ip[0] == vm_inst[1]) {
add_inst (b, "ipush");
ip += 2;
goto _endif_;

}

Disassembling a basic block ends if ip points to the start of another basic
block or if the C code of the instruction contains SET_IP or SUPER_END.

This profiling approach does not notice basic block boundaries arising from
targets of branches that are not taken in the profiling run. However, the front
end can register additional basic block boundaries explicitly if that additional
precision is desired.

4.8 Peephole Optimization

The current approach to combining instructions into superinstructions is a very
simple peephole-optimizing approach: Every invocation of gen_inst (see Sec-
tion 4.5) checks if the new instruction can be combined with the last instruction
into a superinstruction; of course, the last instruction can already be a superin-
struction.

Instructions must not be combined across VM branch targets (because you
cannot branch into the middle of a superinstruction), so accurate reporting of
VM branch targets is essential (but usually easy, because the front-end knows
branch targets during VM code generation).

Vmgen supports this approach with routines in peephole.c and by generat-
ing tables in *-peephole.i for mapping two instructions to a superinstruction:

{ 1, 0, 2}, /* ipush_iadd */

14



This is the rule for combining ipush (index 1) and iadd (index 0) into
ipush_iadd (index 2).

Peephole optimization is transparent to the human-written code generation
code: For example, if there is a call to gen_ipush, followed by a call to gen_iadd,
then the code generation support code automatically generates ipush_iadd.

The only additional requirement is to report basic block boundaries arising
from branch targets. Once you have done that, you can add or delete superin-
structions at will, rebuild the interpreter, and the new superinstructions are
used automatically.

5 Optimizations

Vmgen implements a number of optimizations and supports a few others. The
optimizations performed when combining instructions into superinstructions
have already been described in Section 4.3 and 4.8.

5.1 Scheduling and prefetching

If vmgen were to generate a single NEXT (dispatch next VM instruction) macro
invocation at the end of the code for each instruction, GCC might not be able
to schedule the NEXT code to be processed in parallel with the rest of the code
for the instruction, e.g., if the rest of the code ends with a basic block boundary
or with a store (potential aliasing with the load at the start of the dispatch
code®).

Therefore, vmgen generates three macro invocations for dispatch (NEXT_PO,
NEXT_P1, NEXT_P2) and distributes them through the code for an instruction.
There are various ways to define these macros (and some related ones, e.g.,
ADD_TIP and SET_IP) to optimize for the specific properties of the architectures
and microarchitectures, e.g.: number of registers, the latency between the VM
instruction load and the dispatch jump, and autoincrement addressing mode.
This scheme even allows prefetching the next-but-one VM instruction; Gforth
(an interpreter built with vmgen) uses this on the PowerPC architecture to good
advantage (about 20% speedup, see Section 7.3).

Figure 6 shows an example of well-scheduled code: the code for dispatching
the next instruction is interleaved with the other code.

Vmgen also supports scheduling in other ways: e.g., the stack pointer updates
are between the loads from the stack and the user-provided C code to fill the
latency of the loads; this means that the C code also fills the update-to-store
latency (address-generation interlock) that some processors have.

5.2 Top-of-stack caching

Vmgen supports keeping the top-of-stack item (TOS) of each stack in a register
(i.e., at the C level, in a local variable). This optimization has the following
benefits:

e It reduces the number of loads from and stores to a stack (by one each)
of every VM instruction that takes one or more arguments and produces

8The restrict feature of ISO C’99 could be used to avoid aliasing, but was not available
when we originally encountered this problem in 1992.
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one or more results on that stack. This halves the number of data-stack
memory accesses in Gforth [Ert95].

e Many of the remaining loads and stores are placed further away from the
instructions that use or produce the result, supporting more instruction-
level parallelism; this is especially important for floating-point operations
on in-order execution CPUs.

The downside of this optimization is that it requires an additional register,
possibly spilling a different VM register into memory. Still, we see an overall
speedup for Gforth even on the register-starved IA32 (Pentium, Athlon) archi-
tecture.

Vmgen performs this optimization by replacing [0] with TOS when referenc-
ing stack items. In addition, there are the following cases to consider:

e If a VM instruction takes no arguments from a stack but produces results,
it has to flush (store) the TOS for that stack to memory at the start of
the VM instruction; that TOS will be refilled from the results at the end.

e If a VM instruction produces no results on a stack but takes arguments,
it has to refill (load) the TOS for that stack from memory at the end of
the VM instruction.

e However, if the VM instruction does not access the stack at all, the TOS
need not be spilled and refilled.

You can see the benefits of these optimizations in Fig. 6 (only one memory
access for three stack accesses) and Fig. 9 (no stack memory accesses remaining).

As long as all stack accesses are managed by vmgen, this optimization is
transparent to the interpreter writer (apart from the need to define a few macros,
e.g., spT0S).

However, sometimes an interpreter needs to access stack items in memory
(e.g., JVM locals), or set the stack pointer (e.g., JVM return instructions).

If the VM contains such instructions, the user has two options:

e Disable top-of-stack caching.

e Flush the top-of-stack cache explicitly before the stack access or stack
pointer change, and reload it afterwards.

5.3 Eliminating stack stores

For VM instructions like
dup (i --1ii)

naively generated code would store i twice, one store (for the bottom element)
into the memory location it was loaded from. This store is redundant, but the
C compiler does not reliably optimize it away.

Therefore, vmgen optimizes it away at the C code level. It uses the name of
the stack item as an indication: if a result stack item has the same name as the
argument stack item coming from that location, vmgen suppresses the store.
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Vmgen requires that the user-supplied C code does not change argument
stack items, otherwise this optimization would be incorrect. Currently this
requirement is not checked, but it could be enforced by declaring the argument
stack item variables const and using an initialization instead of the assignment
to the variable.

There are two complications, however: If top-of-stack caching is enabled,
the bottom-element store in the dup example is no longer redundant, because i
comes from the TOS register, and the store is to memory (conversely, the top
store is to the TOS register and GCC optimizes it away); so, in the example
above vmgen generates code for conditionally compiling the store.

The other complication is that store optimization is hard to do for superin-
structions, because it would require tracking the stack items through the com-
ponents. Therefore, vmgen currently does not perform the store optimization
for superinstructions.

5.4 Branch prediction

Mispredictions of indirect branches are a major component of the run-time of
efficient interpreters [EG01]. Many current processors use a branch target buffer
(BTB) to predict indirect branches, i.e., they predict that the target address
of a particular indirect branch will be the same as on the last execution of the
branch.

So, ideally, we should use a different indirect branch if the next VM in-
struction is different from the last time an indirect branch is executed. On a
general scope, this means that each VM instruction should have a separate in-
direct branch (our threaded-code dispatch macros ensure this), and that each
VM instruction (or superinstruction) should occur at most once in an inner loop
(frequently-used VM instructions are a problem here, but superinstructions can
mitigate that).

For conditional branch VM instructions it is likely that the two possible
next VM instructions are different, so it is a good idea to use different indirect
branches for them. Vmgen supports this optimization with the macro TAIL (see
Section 3.2). Vmgen expands this macro into the whole end part of the VM
instruction (or superinstruction), including the code for storing the stack items
into the appropriate memory locations (and top-of-stack register(s)).

6 Experience

We have used vmgen to implement two interpreters:

Gforth is a portable product-quality interpretive implementation of Forth
[Ert93]. Forth is a stack-based language, and Gforth has three programmer-
visible stacks (data stack, return-stack, and floating-point stack); most of the
VM instructions are directly used as Forth words. The Gforth-0.5.0 VM specifi-
cation has 2340 lines, contains 319 VM instructions, and vmgen generates 15466
lines of C from this (with no superinstructions). The Gforth project started in
1992 and Gforth has been distributed as a GNU package since 1996. Vmgen
has been used from the start and proved to be very useful, not just because it
allowed adding new VM instructions with little effort, but also because it made
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it easy to generate additional output formats that were not envisioned originally
(e.g., a TAGS file supporting fast navigation of the VM description from Emacs).

The other interpreter we implemented is a threaded-code variant of the Ca-
cao JVM JIT compiler [GEKO01]. The goals of this project are to see how useful
vmgen is for other interpreters than Gforth, to add any missing functionality,
and to build a high-performance interpreter for the JVM. In order to achieve the
last goal, we decided to translate the original bytecode into threaded code for
a JVM-like VM in JIT-compiler fashion. This avoids the performance penalties
of bytecode interpretation (in particular for immediate operand access), and al-
lows having more than 256 VM instructions (including superinstructions). The
manually written VM specification has 1089 lines and contains 156 VM instruc-
tions (we did not do a 1:1 mapping of the JVM instructions to our VM); in
addition, there are 113 VM instructions for JNI functions that are generated
automatically; vmgen generates 14623 lines of C code from this (with no su-
perinstructions).

Vmgen works well for threaded-code Cacao; we added a few new features for
this project that were not necessary for Gforth (e.g., generating a VM disassem-
bler and VM code generation support), but nothing unexpected. Actually the
use of vmgen in Cacao is more straightforward than in Gforth." Using vmgen for
a byte-code interpreter should be possible; however, because vmgen currently
supports only types with up to two stack slots, dealing with immediate operands
with more than two bytes (coming from the instruction stream “stack”) would
currently require manual construction of the operands out of smaller fragments.

The presence of superinstructions had an interesting effect when we wrote
threaded-code Cacao: In several cases where we considered introducing a new
VM instruction, we just used a sequence of already existing VM instructions,
because the new VM instruction would be introduced automatically if the se-
quence was executed frequently enough. So, superinstructions are not just a
run-time optimization, but they also help optimizing programming time.

Vmgen needs a few seconds to run. However, compiling the resulting files
can take several minutes even on fast machines, because some of the functions
to be compiled are huge after including the generated code (e.g., 135000 lines for
the engine function of Cacao with 1069 superinstructions). The main practical
limit, however, is memory during compilation: Compiling Gforth with 1300
superinstructions requires about 200MB on a 32-bit machine and about 350MB
on a 64-bit machine. Compiling Cacao with 2400 superinstructions requires
about 800MB on a 64-bit machine (and severely thrashes on a 512MB machine).

Historically, the root of vmgen is the experience gained in writing a Prolog
interpreter based on the WAM (Anton Ertl, Thomas Graf, Andreas Krall 1990)
and a 4GL interpreter based on a stack-based VM (Anton Ertl 1991); both
projects were done at DMS Decision Management Systems GmbH, Vienna. So
when the Gforth project started in 1992, we knew the repetitive and automat-
able parts of writing an interpreter, and wrote a generator for it, first in Emacs
Lisp, with a rewrite in Forth in 1994 (the Elisp version was Emacs-version-
dependent, slow, and hard to modify); the current version consists mainly of a
1246-line Forth program. The early experiences also influenced the modifica-
tions that we performed when we generalized the generator tailored for Gforth’s

hGforth requires a few additional twists because its basic implementation model is indirect
threaded code [Dew75]; the code that deals with that additional complication is small enough
that we did not create automatic support for it.
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needs into a general VM interpreter generator.

7 Performance

In this section, we present basic performance data and evaluate the effect of the
various optimizations. Many of the optimizations have been evaluated in earlier
papers; the contribution of this section is in a more detailed evaluation and in
measurements on modern hardware (branch prediction hardware makes a big
difference). Also, the earlier measurements were performed in environments that
are different from the environment we are using (i.e., different VMs, different
dispatch method, different hardware), so we performed these measurements to
validate the earlier results, and to quantify the effects of the optimizations on
interpreters generated with vmgen on modern hardware.

7.1 Benchmarks and environment

The Forth benchmarks are:

sieve, bubble, matrix, fib Small integer benchmarks.

brainless (0.0.0; on Alphas 0.0.2) A chess program written by David Kiihling
(3000 lines).

brew (0.03z9) Evolutionary programming simulation, written by Robert Ep-
precht (18000 lines); we did not run this benchmark on the Alphas (it is
not 64-bit clean).

pentomino A puzzle solver, written by Bruce Hoyt (500 lines).
The JVM benchmarks are:

javac The JDK 1.0 Java compiler compiling JavalLex.
db The SPEC JVM98 benchmark _209_db.!
sieve A small integer benchmark.

suml A tiny benchmark that does nothing but increment long variables. It
is designed to maximize the speed difference between native-code Cacao
and interpreters; e.g., it uses longs because the JVM requires more VM
instructions for incrementing a long than an int (there is no long version of
iinc). The value of this benchmark is in providing worst-case performance
numbers for interpreters rather than realistic numbers.

Table 1 shows the environments we used for most benchmark runs (excep-
tions are noted where they occur). On all machines we used GCC 2.95 for
compiling C code.

The baseline interpreters we use in the following sections have all optimiza-
tions applied except peephole optimization for using superinstructions; we did
not apply superinstructions in the baseline because we are still experimenting

iBugs in Cacao (already present in the original native-code version) prevented running

more of SPEC JVM98.
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CPU Arch. Clock System 0S

Athlon TA32 800MHz Abit KT7 Linux-2.4.0, glibe-2.1
Pentium IIT | TA32 750MHz Asus CUBX Linux-2.2.14, glibc-2.1
PPC 7400 PowerPC 450MHz PowerMac G4 Linux-2.2.9, glibe-2.1
PPC 604e PowerPC 200MHz PowerMac 7500 Linux-2.2.9, glibc-2.1

21064a Alpha 300MHz AlphaPC64 Linux-2.2.13, glibc-2.0
21164a Alpha 600MHz PC164LX Linux-2.2.13, glibc-2.0
21264 Alpha 500MHz XP 1000 Linux-2.2.14, glibc-2.0

Table 1: Hardware and OS used for benchmarking

Athlon | sieve bubble matrix fib brainless brew pent.
BigForth 2.0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gforth 2.89 3.11 8.68  5.59 397 181 6381
Win32Forth 4.2 4.63 4.68 11.23 8.09 4.47 13.83
PFE 0.30.90 14.97 14.94 2395 23.59 820 3.74 2451

21064a javac db siev suml

Cacao native 1.00 1.00 1.00 1.00

Cacao int 2.12 229 10.16 39.91

DEC JVM 1.1.4 native | 13.14 23.65 2.04 3.85

DEC JVM 1.1.4 int 15.80 27.50 22.51 104.88

OSF JVM 1.0.1 int 29.06 156.42

21164a javac db siev suml

Cacao native 1.00 1.00 1.00 1.00

Cacao int 227 210 17.54  25.08

DEC JVM 1.3.1 native 5.01 2.52 3.23

Kaffe 1.0.5 int 19.57 6347 93.21

Table 2: Relative user times of running benchmarks with Gforth, Cacao int and
their competitors (smaller is better)

with the selection of the right superinstructions, and because superinstructions
increase the chances of I-cache conflicts, which can cause large performance
variations that may hide other performance effects.

On TA32 we compiled Gforth (all versions we compare) with explicit register
allocation of the most important VM registers, because otherwise GCC spills
some of them to memory, resulting in significant slowdown (factor 1.5-2 on the
Athlon)).

7.2 Basic performance

This section compares the performance of interpreters generated with vmgen
with the performance of other systems.

Table 2 compares the performance of the interpreters generated with vmgen
(Gforth and Cacao int) with other language implementations on the same hard-
ware. The results are execution times relative to the fastest implementation
(i.e., smaller is better).

BigForth is a relatively simple Forth native code compiler (it uses macro
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expansion and peephole optimization for code generation) [Pay91]; Gforth is
1.81-8.68 times slower on the Athlon; on the Pentium III the factors are similar
(2.36-7.96). The small slowdown on brew is probably caused by library functions
that are implemented more efficiently in Gforth (with the right superinstructions
Gforth beats BigForth on brew).

Win32Forth is a Forth interpreter written in assembly language. We ran
it on Windows 95 and measured elapsed timeJ Why is Win32Forth slower
(factor 1.13-1.60 excluding pentomino) than Gforth? The two main reasons
are: Win32Forth uses a position-independent image format, and relocates at
run-time; this requires one additional computation on every memory access
into the image; Gforth avoids this overhead by relocating at load time. And
Win32Forth uses indirect threaded code, i.e., one indirection more per VM
instruction dispatch (in Gforth the slowdown caused by indirect threaded code
is 1.13-1.4). Gforth’s speedup over Win32Forth shows that it is possible to
create fast interpreters with vmgen.

PFE is a Forth interpreter written in C; execution speed is only a sec-
ondary goal in its development. Still, it is one of the faster C-based Forth
interpreters (at least when using GNU C’s global register variables (configure
option --with-regs), as we have done). Gforth’s speedup over PFE and other
C-based interpreters shows that the speedup between different interpreters can
be larger than the speedup from a fast interpreter to native code, so you cannot
generalize from the performance of one interpreter to interpreters in general.

Cacao native is a JVM JIT compiler that allocates locals and stack items to
registers and also performs loop optimizations (affects only the sieve results). It
shares code like the garbage collector and synchronization with Cacao int. On
the small benchmarks, the slowdown of Cacao int is more than a factor of 10
(with a worst case slow-down of 40), but on the larger ones the slowdown is a
factor of about 2. One important reason for this is that (according to gprof)
for these benchmarks Cacao int spends about 30% of its time in routines like
synchronization or garbage collection that are the same speed on both imple-
mentations; so even with an infinite speedup on the rest Cacao native could get
only a speedup of 3.33.

We ran the DEC JVM 1.1.4 and OSF JVM under Digital Unix 4.0F. The
DEC JVM native (JIT) versions beat Cacao int by a lot on the small bench-
marks, but are slower than Cacao int on the large benchmarks. For the DEC
JVM 1.1.4 we know that this is due to a slow implementation of synchronization
[KP98]. The moral of these results is that speeding up run-time system routines
like synchronization can have more impact (and probably costs less effort) than
implementing a JIT compiler to native-code.

The other interpretive JVM implementations are slower than Cacao int by
more than a factor of two on all benchmarks; we believe that this speed ad-
vantage is due to the threaded code implementation and the other performance
features that Cacao int derives from vmgen.

In conclusion, even without superinstructions the performance of interpreters
generated with vmgen is very competitive relative to other interpreters, and the
slowdown over native-code compilers is limited.

JFor Gforth under Linux the elapsed time was close to the user time, except for the pen-
tomino benchmark, which writes a lot to the terminal; so we expect that these timings (except
pentomino) are comparable to the other times.
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Figure 10: Comparing several dispatch code scheduling variants

7.3 Scheduling and prefetching

Gforth defines the macros NEXT_PO etc. differently for different architectures,
mainly to support the C compiler in scheduling and code selection (e.g., autoin-
crement addressing modes).

In particular: on the Alpha architecture we use an early fetch of the next VM
instruction (in NEXT_PO) to support filling the delay slots of that load instruction;
on Power/PowerP C Gforth pre-fetches the next-but-one instruction in NEXT_P1,
because these CPUs usually have a particularly long load-to-jump latency (7
cycles on the PPC 604). We do not schedule the instruction fetch early on
TA32, because that would increase register pressure and cause more spilling.

Figure 10 shows the results of our evaluations of different scheduling strate-
gies on Alphas and PowerPCs.

On the PowerPCs prefetching gives a good speedup (& 1.2) over no schedul-
ing, because of the long load-to-jump latencies. We did not compare early
fetching with no scheduling on the PowerPC, but we expect the results would
be similar to the results on the Alphas.

On the Alphas, there is little difference between the three scheduling strate-
gies.

The small difference between early fetching and prefetching (case B in Fig. 10)
is easily explained by the fact that the Alphas have a relatively short load-to-
jump latency, so prefetching does not help often or much; and they have enough
resources that the additional move necessary with prefetching hurts little or not
at all.

But we were surprised by the small difference between early fetch and no
scheduling on the Alpha (case C in Fig. 10). Looking at the machine code, we
found that GCC managed to schedule the load well ahead of the jump by itself
in many cases, because in many VM instructions there is no store or basic block
boundary that would impede scheduling.

However, when we disabled top-of-stack caching in both variants (case D
in Fig. 10), using our scheduling support provided significant speedups over no
scheduling support, because then many VM instructions perform a store near
the end. The significance of this experiment is that in other VMs stores or basic
block boundaries near the end of the VM instruction might be more frequent
than in our baseline Gforth, so explicit early fetching may have more value in
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Figure 11: Speedup of the base system over a version without top-of-stack
caching

general than is apparent from the results for case C.

In conclusion, for best performance the dispatch macros have to be defined
in a processor-specific way; fortunately, the interpreter writer can use Gforth’s
macros as a starting point (e.g., we did so for Cacao int).

7.4 Top-of-stack caching

To evaluate the effect of top-of-stack caching, we compiled Gforth on all ma-
chines without top-of-stack caching (this requires just defining the preprocessor
symbol USE_NO_TO0S) and compared the result to the base system. You find the
results in Fig. 11.

On the TA32 processors (in particular the Athlon) top-of-stack caching pro-
vides a surprisingly large speedup, given that this architecture is register-starved
and that the optimization increases register pressure; looking at the machine
code of some frequently-executed VM instructions, we did not see additional
spill code.

On the PowerPCs the speedup is even larger, as we expected on a machine
with lots of registers.

To our surprise, the speedup of top-of-stack caching on the Alphas (in par-
ticular, the 21164a) is relatively small, and for some benchmarks there is even
a slowdown. Apparently these processors have enough resources to process the
additional loads and stores incurred without top-of-stack caching; and appar-
ently the additional latencies are not a problem or masked by parallel processing
with other data (e.g., VM instruction fetch). We explain the slowdowns with
non-monotonic effects in instruction issuing (i.e., inserting an instruction can
cause a speedup); this explanation is supported by the fact that the first three
benchmarks show a slowdown on the 21164a and a large speedup on the 21264
or vice versa.

In conclusion, top-of-stack caching provides a performance benefit on most
processors, but the size of the benefit is hard to predict.

7.5 Eliminating stack stores

We evaluated the store elimination optimization by disabling it in vmgen, build-
ing a version of Gforth with these redundant stores, and measuring it on the
Athlon.
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Among our benchmarks only sieve and bubble profit significantly (=~ 10%)
from store elimination, because they use VM instructions in their inner loops
that profit from this optimization. We see little difference for the other bench-
marks.

Using the Athlon’s performance-monitoring counters, we see the following:
for the three larger benchmarks this optimization reduces the number of instruc-
tions executed on the Athlon by 0.6%—-0.8%, but on brew and brainless there is a
small slowdown, caused by a higher number of branch mispredictions (probably
because different code placement leads to different conflicts in the BTB).

In conclusion, this optimization provides only minor benefits.

7.6 Branch prediction

We evaluated the effect of using different indirect jumps for the different out-
comes of VM conditional branches by comparing (on the Athlon) the base Gforth
system with a version that was built from a variant of the .vmg file where we
eliminated all uses of the TAIL macro.

For the small benchmarks we see speedups of 2%-9% from using TAIL. For
the large benchmarks we see only 0%—2% speedup. Looking at the perfor-
mance counter results for the large benchmarks, the branch prediction results
are mixed; apparently the variation in prediction accuracy (& 1%) resulting from
code placement differences is larger than the the prediction accuracy benefits
we get from using TAIL.

However, we also see a reduction in the number of executed instructions
(0.6%—-1.7% for the large benchmarks); looking at the machine code, we see
that GCC performs some additional optimizations if we use TAIL.

In conclusion, using TAIL gives mixed results for branch prediction, but it
produces minor additional benefits.

7.7 Superinstructions

For Cacao int we selected superinstructions by profiling javac and db, and then
making superinstructions for all VM instruction sequences up to a given length
that occured in the run; with two training programs and three maximum lengths
(2, 3, 4) this provided six versions of Cacao with superinstructions. Similarly,
for Gforth we used brainless and brew for training runs; however, we had less
memory for compiling the result and the training runs produced more unique
sequences, so we reduced the number of resulting superinstructions by throwing
out all sequences with a dynamic execution count of less then 10000 in the
training run. Figure 12 shows the number of superinstructions generated for
each variant.

While we see nice speedups on small benchmarks (up to a factor of 5.46 for
matrix on Athlon), we focus on the larger benchmarks in this section, because
the small benchmarks are too sensitive to the presence or absence of a few
specific superinstructions to be general indicators of performance.

Figure 13 shows how the use of superinstructions affects execution time
on different processors; we measured brainless and used the superinstructions
derived from brew, but the results for other benchmarks are mostly similar
(although the magnitude of the speedups varies).
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Figure 12: Number of superinstructions generated with different training pro-
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Figure 13: Results for brainless, with superinstructions from a brew training
run. Left: speedup on various CPUs. Right: various performance metrics on
the Athlon; 10G, G, and M indicate different scaling factors.

Figure 13 also displays some performance counter results on the Athlon for
the same benchmark; the superinstructions reduce the number of native in-
structions a bit (factor up to 1.28), the number of native branches some more
(1.49), and the number of mispredicted branches even more (2.32). The number
of cycles on the Athlon (1.83) is strongly influenced by the number of mispre-
dicted branches, because every misprediction costs about 12 cycles, and there
are only 7.72-14.03 instructions per mispredicted branch; spending the majority
of the cycles on mispredicted branches also explains the relatively low number
of instructions per cycle (0.42-0.61) on this triple-issue machine. Most of the
branches in Gforth are indirect branches for dispatching the next VM instruc-
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Figure 14: Speedup achieved on 21064a and 21264 by using superinstructions
consisting of simple instructions with varying maximal length (trained using
brew or db)

tion, and they are responsible for the high misprediction rate (58%-37%); mis-
predictions are caused by several occurences of a VM instruction in the working
set, and superinstructions reduce that. The number of I-cache misses is low
and its performance effect negligible; given that all the engines used fit in the
Athlon’s I-cache, this is not surprising.

These performance counter results also help explain the differences between
the various processors. The Athlon, Pentium III, and 21264 have BTB-like
indirect branch predictors and mispredict penalties of 10-12 cycles, and they
profit much from the branch prediction improvements, so they see the great-
est speedups from superinstructions. They also have a large I-Cache or (Pen-
tium IIT) a fast L2 cache. The other processors do not predict indirect branches
and profit mainly from the reduction in indirect branches. On the 21064a and
21164a the small, direct-mapped I-caches may reduce the benefit of superin-
structions.

Figure 14 shows the effect of superinstructions on various large benchmarks.
The 21064a results for the JVM benchmarks show slowdowns from using su-
perinstructions.

One explanation for these slowdowns is I-cache misses: the 21064a uses
a 16KB direct-mapped I-cache backed by a slow L2 cache (60ns load-to-load
latency in a pointer-chasing benchmark). We used the performance counters
of the 21064a (under Digital Unix 4.0F) to investigate the I-cache misses (see
Fig. 15%): javac and db do indeed spend significantly more time in I-cache misses
than pentomino and brainless. However, in db they spend even more time in
D-cache misses. Together these results explain the slowdowns and the missing
speedups. We believe that the additional D-cache misses for db are conflict
misses caused by different placement of the VM code (VM code is smaller with
superinstructions, so capacity misses should be reduced).

You can see the interpreter sizes in Fig. 15 (the interpreters used for mea-
suring I-cache misses are gforth brew and cacao db). The base Cacao interpreter
engine (without support functions) almost fits in the 21064a’s I-cache, and the
misses in the base version mostly come from conflicts with or between support-

kKMemory constraints prohibited compiling larger interpreters on Digital Unix.
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Figure 15: Left: Time spent in I-cache misses on the 21064a (running on in-
terpreters trained with brew or db). Right: interpreter engine size (without
supporting functions) on Alpha.

ing functions like garbage collection or synchronization (only 36% of the I-cache
misses for javac and 8.5% for db are in the threaded-code interpreter); however,
for the larger interpreters, the majority of the misses are in the threaded-code
interpreter.

However, large threaded-code interpreters do not necessarily cause I-cache
thrashing: e.g., Gforth brew with max. superinstruction length 3 is more than
three times as large as the 21064a’s I-cache, but brainless and pentomino do not
thrash the I-cache when running on this interpreter. These differences may be
caused by locality differences in the interpreted programs.

We also investigated if the different speedup behaviour of the Forth and the
JVM benchmarks was caused by the differences in selecting superinstructions
for Gforth and Cacao: We selected the Cacao superinstructions like we had
selected the Gforth superinstructions (i.e., only sequences with more than 10000
dynamic executions). While we saw an improvement, there are still slowdowns
and hardly any speedup for the Java benchmarks on the 21064a, and there is
still a large difference compared with the Gforth speedups.

It is also interesting to compare the effect of training on other programs
or with other input data to the perfect training of using the measured run as
training run, to see what we can gain at the most by improving superinstruction
selection (see Fig. 16). We see that even when training with just one large
program, we get surprisingly close to the optimum.

In conclusion, superinstructions provide a large optimization potential, es-
pecially on processors with BTB-like branch predictors.

8 Related work

There are many generators for producing the front end of compilers and interpre-
tive systems (e.g., yacc), and there are code generator generators for producing
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Figure 16: Speedup achieved on Athlon for superinstructions selected with dif-
ferent training runs; in z/y, z is the measured run, and y is the training run.

the back end of native-code compilers (e.g., burg). However, we know of no
other general tool for constructing the back-end of an interpretive system.

There are more ambitious projects than vmgen that take a description of
the syntax and semantics of a language as input and produce an interpreter for
the language as output (e.g., ULC!). The main disadvantage of such systems is
that they are restricted to a certain class of languages, whereas vmgen is more
flexible, because it can be combined with any front-end (as long as it can call
C functions).

The work closest to vmgen are the generators used by the authors of sophis-
ticated VM interpreters; the main difference to these generators is that vmgen
has been extended and tested as a general VM interpreter generator instead of
being specific to one project.

The Scheme 48 system [KR94] uses an accumulator/stack-based VM. The
VM interpreter is specified in the Scheme subset Pre-Scheme and is compiled
into C code. The generated C code has some similarities with vmgen’s output:
e.g., it uses VM-instruction-scope variables as intermediate storage. The input
also appears to have some similarities, but is not described in sufficient detail to
allow a detailed comparison (the interpreter specification macros are portrayed
more as a Pre-Scheme application than a separate package). Apart from being
specific to one language implementation, this generator differs from vmgen in
not performing implicit top-of-stack caching; instead, the VM uses an accumu-
lator to support explicit stack caching visible at the VM level (an extra push
instruction is required to get values from the accumulator to the stack).

The C interpreter hti [Pro95] uses a tree-based VM (linearized into a stack-
based form) derived from lcc’s intermediate representation. The VM interpreter
is created using a tree parser generator and can contain superoperators. The VM
instructions are specified in a tree grammar; superoperators correspond to non-
trivial tree patterns. The main difference from our work is that our generator

Thttp://www.imm.dtu.dk/~jsm/ulc/
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works for general stack-based VMs (corresponding to DAGs when represented as
data-flow graphs); e.g., in the vmgen input you can specify dup ( i —- i i ),
which cannot be expressed as a tree operator. The differences between super-
operators and our superinstructions have the following consequences: superop-
erators can combine instructions that are not in a sequence (e.g., iload ...
isub; other trees may intervene); superinstructions can combine VM instruc-
tions that are not tree patterns (e.g., the most frequent sequence in our JVM
interpreter is iload iload). Proebsting reports higher speedups from superop-
erators than we see from superinstructions; we believe that this is due to the
differences in the VMs used (but differences in the benchmarks and the hard-
ware may also play a role), so we cannot draw conclusions about the value of
superoperators vs. superinstructions.

The VVM project allows defining VMs through VMlets [FPR98]. VMlets
define new VM instructions in terms of existing VM instructions (starting with
a base of primitive instructions), like superinstructions in vmgen. The main dif-
ferences from vmgen are: With vmgen, you can define arbitrary VM instructions
in terms of C, whereas you are limited to the predefined primitives in VVM; as
a consequence, you have to use vmgen at interpreter-build time, whereas VVM
is much more dynamic and allows loading VMlets at run-time.

IL [ASWO1] is a low-level language used for writing and porting APL inter-
preters; it is easier to retarget the IL compiler than to port an APL interpreter
written in assembly language; i.e., IL is used as a portable assembly language,
like C in vmgen-based interpreters. IL does not automate the tasks that vmgen
automates.

Hand-written interpreters usually make extensive use of macros (e.g., Kaffe);
this demonstrates that many tasks in writing interpreters are quite repetitive.
The advantages of vmgen over a general macro processor are that the users do
not need to design their own macro package, and that vmgen does many things
(e.g., optimizations) that typical macro packages do not do. However, vmgen
only performs tasks that cannot be done easily by a macro processor; so, vmgen
defers some tasks to the C macro processor, and in Gforth we use the m4 macro
processor to preprocess vmgen input.

Most of the performance-enhancing techniques used by vmgen have been
used and published earlier: threaded code and decoding speed [Bel73, Kli81],
scheduling and software pipelining the dispatch [Ert93, HA00, HATvdW99],
stack caching [Ert93, Ert95] and combining VM instructions [Pro95, PR9S,
HATvdW99]. New optimizations: the store optimization (Section 5.3), which
comes up only in a generator like vmgen (whereas a human programmer would
not, generate the stores in the first place); and using tail duplication to improve
indirect branch prediction (Section 5.4).

There are also other interesting works on interpreters in general [DV90,
Kra83], semantic content, virtual machine design and time/space tradeoffs [Pit87],
and various optimizations [SC99).

Code generation libraries such as vCODE [Eng96] and GNU Lightning allow
the user to generate native code by using a fixed, register-based programming
interface. They can be used to implement programming languages and probably
offer higher execution speed than vmgen-based interpreters, but also have some
shortcomings: lack of portability (only a few targets are supported by each
system), a fixed interface (in contrast to defining a VM tailored for the language)
and no debugging support.
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9 Conclusion

Vmgen is a generator for virtual machine (VM) interpreters. It automates much
of the repetitive work in writing an interpreter, and supports writing high-
performance interpreters.

It automatically generates code for accessing VM instruction operands and
results, for dispatching the next VM instruction, for tracing VM instruction
execution, for VM code disassembly, for supporting VM code generation, and
for profiling frequent VM instruction sequences (aiding the selection of superin-
structions).

Vmgen supports and encourages writing high-performance interpreters by
supporting techniques like threaded code, keeping the top-of-stack in a register
(speedup 1.2-1.3 on PowerPCs), scheduling the dispatch code to fetch the next
VM instruction early (prefetching speedup 1.2 on PowerPCs), having different
instances of the dispatch code for better branch prediction, eliminating super-
fluous stores, and combining VM instructions into superinstructions (speedup
1.8 on Athlon). Even without superinstructions, the interpreters generated with
vmgen are faster than competing interpreters and the slowdown over native-code
compilers is usually less than a factor of 10 (and often as low as 2).

Vmgen is available through http://www.complang.tuwien.ac.at/anton/vmgen/.
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