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Abstract

Forth has been traditionally implemented as indirect
threaded code, where the code for non-primitives is the
code-field address of the word. To get the maximum
benefit from combining sequences of primitives into su-
perinstructions, the code produced for a non-primitive
should be a primitive followed by a parameter (e.g.,
lit addr for variables). This paper takes a look at
the steps from a traditional threaded-code implemen-
tation to superinstructions, and at the size and speed
effects of the various steps. The use of superinstruc-
tions gives speedups of up to a factor of 2 on large
benchmarks on processors with branch target buffers,
but requires more space for the primitives and the op-
timization tables, and also a little more space for the
threaded code.

1 Introduction

Traditionally, Forth has been implemented using an
interpreter for indirect threaded code. However, over
time programs have tended to depend less on spe-
cific features of this implementation technique, and an
increasing number of Forth systems have used other
implementation techniques, in particular native code
compilation.

One of the goals of the Gforth project is to provide
competetive performance, another goal is portability
to a wide range of machines. To meet the portability
goal, we decided to stay with a threaded-code engine
compiled with GCC [Ert93]; to regain ground lost on
the efficiency front, we decided to combine sequences of
primitives into superinstructions. This technique has
been proposed by Schiitz [Sch92] and implemented by
Wil Baden in thisdth [Bad95] and by Marcel Hendrix
in a version of eforth. It is related to the concepts of
supercombinators [Hug82] and superoperators [Pro95].

Non-primitives in traditional indirect threaded code
cannot be combined into superinstructions, but it is
possible to compile them into using primitives that can
be combined; compiling into primitives also makes it
possible to use a portable and fast variant of direct-
threaded code. This paper describes the various steps
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Figure 1: Traditional indirect threaded code

from an indirect threaded implementation to an im-
plementation using superinstructions (Section 2), and
evaluates the effect of these steps on run-time and code
size (Section 4); these steps also affect cache consis-
tency issues on the 386 architecture, which can have a
large influence on performance (Section 3).

This version of this paper differs from the earlier ver-
sion [Ert01] mainly by reporting experience with hy-
brid direct/indirect threaded code (see Section 5).

2 Threaded code variations

We will use the following code as a running example:

variable x

: foo x @ ;

2.1 Traditional indirect threaded code

In indirect threaded code (Fig. 1) the code of a colon
definition consists of a sequence of the code field ad-
dresses (CFAs) of the words contained in the colon de-
finition. Such a CFA points to a code field that con-
tains the address of the machine code that performs
the function of the word.

The reason for the indirection through the code field
is to support non-primitives, like the variable x in our
example: The dovar routine can compute the body ad-
dress by adding the code field size to the CFA.
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Figure 2: Direct threaded code, traditional variant

2.2 Traditional-style direct threaded

code

For primitives the indirection is only needed because
we do not know in advance whether the next word is a
primitive or not. So, in order to avoid the overhead of
the indirection for primitives, some Forth implementors
have implemented a variant of this scheme using direct
threaded code (see Fig. 2). For primitives, the threaded
code for a word points directly to the machine code,
and the execution token points there, too.

For non-primitives, the threaded code cannot point
directly to the machine-code routine (the doer), be-
cause the doer would not know how to find the body
of the word. So the threaded code points to a (variant
of the) code field, and that field contains a machine-
code jump to the doer.

This change replaces a load in every word by a jump
in every non-primitive. Because only 20%-25% of the
dynamically executed words are non-primitives, direct
threading is faster on most processors, but not always
on some popular processors (see Section 3).

The main disadvantage of direct threading in
an implementation like Gforth is that it requires
architecture-specific code for creating the contents
of the code fields (Gforth currently supports direct
threading on 7 architectures).

2.3 Primitive-centric threaded code

An alternative method to provide the body address is
to simply lay it down into the threaded code as imme-
diate parameter. Then the threaded code for a non-
primitive does not point to the “code field” of the non-
primitive, but to a primitive that gets the inline para-
meter and performs the function of the non-primitive.
For the variable x in our example this primitive is 1it
(the run-time primitive for literal).

This scheme is shown in Figure 3. The non-
primitives still have a code field, which is not used in
ordinary threaded code execution. But it is used for
execute (and dodefer), because execute consumes a
one-cell execution token (represented by a CFA), not a
primitive with an argument.

Figure 4 shows how the various classes of non-
primitives can be compiled. Instead of using a se-
quence of several primitives for some classes, new prim-
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Figure 3: Primitive-centric direct threaded code
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value lit body @

variable lit body

user variable useraddr offset
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Figure 4: Compiling non-primitives for the primitive-
centric scheme (with the least number of additional
primitives)

itives could be introduced that perform the whole ac-
tion in one primitive. However, if we combine fre-
quent sequences of primitives into superinstructions,
this will happen automatically; explicitly introducing
these primitives may actually degrade the efficacy of
the superinstruction optimization, because the opti-
mizer would not know without additional effort that,
e.g., our value-primitive is the same as the 1it @ com-
bination it found elsewhere.

This scheme takes more space for the code of non-
primitives; this is the original reason for preferring
the traditional style when memory is scarce. There
probably is little difference from traditional-style direct
threading in run-time performance on most processors:
Only non-primitives are affected; in the traditional-
style scheme there is a jump and an addition to com-
pute the body address, whereas in the primitive-centric
scheme there is a load with often fully-exposed latency.
For some popular processors the performance differ-
ence can be large, though (see Section 3).

2.4 Hybrid direct/indirect threaded
code

With the primitive-centric scheme the Forth engine (in-
ner interpreter, primitives, and doers) is divided into
two parts that are relatively independent of each other:

e Ordinary threaded code.
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Figure 5: Hybrid direct/indirect threaded code

e Execute (and dodefer), code fields and execution
tokens.

Only execute (and dodefer) deals with execution
tokens and code fields', so we can modify these com-
ponents in coordinated ways. The modification we are
interested in is to use indirect threaded code fields;
of course this requires an additional indirection in the
execute code, it requires adding code fields to prim-
itives (see Fig. 5), and the execution tokens are the
addresses of the code fields. However, the ordinary
threaded code points directly to the code of the prim-
itives, and uses direct threaded NEXTs.

The main advantage of this hybrid scheme is that
we do not need to create machine-code jumps in the
code field, which helps the portability goals of Gforth
and reduces the maintenance effort. Another advan-
tage is that this allows us to separate code and data
completely, without incurring the run-time cost of in-
direct threaded code for most of the code.

The overall performance impact should be small, be-
cause execute and dodefer account for only 1%-1.6%
of the executed primitives and doers; and it should be a
slight speedup on most processors, because most (70%—
97%) of the executed or deferred words are colon de-
finitions, and indirect threaded code is often faster for
non-primitives (because a jump is often more expensive
than a @).

Another interesting consequence of the division be-
tween ordinary threaded code and execute etc. in
primitive-centric code is that doers (e.g., docol) can
only be invoked by execute; therefore only execute
has to remember the CFA for use by the doers. Unfor-
tunately, the obvious way of expressing this in GNU C
leads to the conservative assumption that this value is
alive (needs to be preserved) across all primitives, and
this results in suboptimal register allocation.

2.5 Double-indirect threaded code

For does>-defined words, the inner interpreter gets the
CFA and has to find the body, the code address of

IExpanding ;code-defined words into 1lit cfa execute en-
sures that this holds for uses of ;code-defined words, too.
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Figure 6: A does>-defined word with indirect and
double-indirect threaded code.

dodoes, and the does-code (the Forth code behind the
does>). With indirect threaded code, Gforth uses a
two-cell code field that contains the code address and
the does-code. Therefore all code fields in Gforth are
two cells wide.

An alternative would be to use a double indirection
(@ @) to get from the code field to the code address
(double-indirect threaded code, see Fig. 6). In this
scheme, the code field for does>-defined words points
near the does-code, and the cell there points to dodoes.

This allows to reduce the code field size to one
cell, but requires an additional indirection on every
use of the code field; using double-indirect thread-
ing for all code would incur a significant performance
penalty, but the penalty is small for a hybrid with
a primitive-centric direct threading scheme. Double-
indirect threaded code also requires one additional cell
for the additional indirection for every primitive.

Forth systems using indirect threaded code and one-
cell code fields usually use a scheme for implement-
ing does>-defined words that is similar to our double-
indirect threaded scheme, with one difference: instead
of a pointer to dodoes there is a machine-code jump
to dodoes between (does>) and the does-code. Gforth
uses an appropriately modified variant of this approach
for direct threaded code on some platforms [Ert93].

2.6 Superinstructions

We can add new primitives (superinstructions) that
perform the action of a sequence of primitives. These
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Figure 7: Combining primitives into superinstructions
in hybrid direct/indirect threaded code

superinstructions are then used in place of the origi-
nal sequence; the immediate parameters to the origi-
nal primitives are just appended to the superinstruc-
tion (see Fig. 7). In Gforth we select a few hundred
frequently occuring sequences as superinstructions.

This optimization can be used with any of the
threading schemes explained earlier, but it gives better
results with the primitive-centric schemes, because a
traditional-style non-primitive cannot be part of a su-
perinstruction. However, it is possible to use the tradi-
tional scheme and convert only the invocations of those
non-primitives into primitive-centric style that are to
be included in superinstructions.

Superinstructions reduce the threaded code size, but
require more native code. The main advantage (and
the reason for their implementation in Gforth) is the
reduction in run-time, mainly by reducing the number
of mispredicted indirect branches.

3 Cache consistency

This section discusses an issue that has a significant
performance impact on most Forth implementation
techniques on the 386 architecture.

Modern CPUs usually split the first-level cache into
an instruction cache and a data cache. Instruction
fetches access the instruction cache, loads and stores
access the data cache.

If a store writes an instruction, how does the in-
struction cache learn about that? On most architec-
tures the program is required to announce this to the
CPU in some special way after writing the instruction,
and before executing it. However, the 386 architecture
does not require any such software support?, so the
hardware has to deal with this problem by itself. The
various implementations of this architecture deal with
this problem in the following ways:

e The Pentium, Pentium MMX, K5, K6, K6-2, and
K6-3 don’t allow a cache line (32 bytes on these
processors) to be in both the instruction and the
data cache. If the instruction cache loads the line,
the data cache has to evict it first, writing back
the modified instruction. Similarly, when the line

2Actually, the 486 requires a jump in order to flush the
pipeline, but that does not help with the cache consistency prob-
lem.
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is loaded into the data cache, it is invalidated in
the instruction cache. The effect of this is that
having alternating data accesses and instruction
executions in the same cache line is relatively ex-
pensive (dozens of cycles on each switch).

e The Pentium Pro, Pentium II, Pentium III,
Celeron, Athlon and Duron allow the same cache
line to be in both caches, in shared state (i.e., read-
only). As soon as there is a write to the line, the
line is evicted from the instruction cache. The
effect is that it is relatively expensive to alter-
nate writes to and instruction executions from the
same cache line (32 bytes on the Intel processors,
64 bytes on the AMDs).

e According to the Pentium 4 optimization man-
ual [Int01], it is expensive on the Pentium 4 to
alternate writes and instruction executions from
the same 1KB-region; actually the manual recom-
mends keeping code and data on separate pages
(4KB).

How are various Forth implementation techniques af-
fected by that?

Indirect-threaded code. If primitives are imple-
mented as shown in Fig. 1, i.e., with code fields ad-
jacent to the code, the data read from the code field is
soon followed by an instruction read nearby (usually in
the same cache line). This leads to low performance on
Pentium-K6-3; e.g., Win32Forth suffered heavily from
this.

Fortunately, this problem is easy to avoid by putting
the code into an area separate from the code fields.
Gforth does this, and performs well on these processors
with indirect threaded code.

Direct-threaded code. Non-primitives have a
jump in the code field close to the data that usu-
ally is accessed soon after executing the jump. So for
traditional-style direct-threaded code the Pentium-K6-
3 will slow down when executing non-primitives, and
the Pentium Pro-Pentium 4 will slow down when writ-
ing to variables and values. There may be additional
slowdowns due to code fields for other words being in
the same cache line as the data, especially with the
longer cache lines of the Athlon/Duron, and the 1KB
consistency checking region of the Pentium 4. Note
that these problems do not show up when running some
of the popular small benchmarks, because their inner
loops often contain only primitives.

These problems can be avoided by using indirect
threaded code or by using primitive-centric direct-
threaded code; in the latter case execute still executes
the jumps in the code fields and will cause slowdowns.
This can be avoided by using a hybrid direct/indirect-
threaded code scheme.
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traditional-style indirect threaded code on an 800MHz
Athlon

Native code. Many Forth-to-native-code compilers
store the native code here, interleaving that code with
data for variables, headers, etc. This can lead to per-
formance loss due to cache consistency maintenance in
a somewhat erratic fashion (depending on which data
shares a cache line with which code in a particular run).
It also leads to bad utilization of both caches.

This problem can be avoided by having separate code
and data memory areas.

4 FEvaluation

This section compares the execution speed and memory
requirements of a number of variants of Gforth:

trad Traditional-style threaded code.

doprims Primitive-centric threaded code using spe-
cial primitives for values, fields, etc., such that
only one primitive is executed per non-primitive.

0 Primitive-centric code, expanding some words into
multiple primitives, as shown in Fig. 4. Equivalent
to using 0 superinstructions.

50, 100, 200, 400, 800, 1600 Using 50, 100, ... su-
perinstructions representing the n most frequently
executed sequences in brainless (a chess program
written by David Kiihling).

We built and ran all of these variants with both
indirect and direct threaded code, making it possible
to identify how various components of a scheme con-
tribute to performance (hybrid schemes were not im-
plemented when these tests were made). For techni-
cal reasons, the kernel of Gforth (a part that contains,
e.g., the compiler and text interpreter, but not the full
wordlist and search order support) is always compiled
in mostly Scheme 0 in these experiments.
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traditional-style indirect threaded code on a 600MHz
21164a

4.1 Speed

Figure 8 and 9 show how the bench-gc benchmark be-
haves on an Athlon and a 21164a (Alpha architec-
ture), respectively. Other benchmarks behave in simi-
lar ways, although the magnitude of the effects varies
with the benchmark and with the processor.

For the traditional-style scheme, indirect threading
is faster than direct threading on current 386 archi-
tecture processors (by up to a factor of 3), because
of cache consistency issues; on other architectures di-
rect threading beats indirect threading also for the
traditional-style scheme, but not by as much as in the
other schemes (because of the additional jumps).

The primitive-centric scheme gives about the same
performance as the traditional-style scheme for indirect
threaded code. For direct threaded code it produces a
good speedup on the 386 architecture, mainly due to
the elimination of cache invalidations. On the Alpha
it gets a little faster, because of the elimination of the
jumps through the code fields. Overall, the combina-
tion of the primitive-centric scheme and direct thread-
ing runs faster than traditional indirect threaded code
on all processors.

Expanding non-primitives into multiple primitives
(Scheme 0) costs some performance, but introducing
superinstructions recovers that right away. On the
Athlon, the Pentium III, and the 21264 the speedup
from superinstructions is typically up to a factor of 2
for large benchmarks, and up to a factor of 5.6 on small
benchmarks (matriz). A large part of this speedup
is caused by the improved indirect branch prediction
accuracy of the BTB on these CPUs. The speedup
from superinstructions is quite a bit less on processors
without BTB like the 21164a and the K6-2 (e.g., for
bench-gc a factor of 1.38 on the K6-2 vs. 1.86 for the
Athlon).

Having a large number of superinstructions gives di-
minishing returns. On the 21164a, there are also slow-
downs from more superinstructions in some configu-
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Figure 10: The sizes of Gforth’s primitives (native
code), engine data (mainly peephole optimization ta-
bles), and threaded code affected by the different
schemes

rations; this is probably due to conflict misses in the
small (8KB) direct-mapped instruction cache.

Using a large number of superinstructions also poses
some practical problems: Compiling Gforth with 800
superinstructions requires about 100MB virtual mem-
ory on the 386 architecture, compiling it with 1600 su-
perinstructions requires about 300MB and 1.5 hours on
a 800MHz Athlon with 192MB RAM. So, in the release
version Gforth will probably use only a few hundred
superinstructions.

4.2 Size

Figure 10 shows data about the sizes of various com-
ponents of Gforth:

Threaded code is the non-kernel part of the
threaded code of Gforth for the 386 architecture;
it contains, e.g., the full wordlist and search order
support, see, and the assembler and disassembler.
The shown size includes everything that appears
in the dictionary, not just the threaded code. The
code grows quite a bit by going to the primitive-
centric scheme, and the savings incurred by su-
perinstructions cannot fully recover that cost.

Native code is the text size of the Gforth binary,
which consists mainly of the code for the primi-
tives. For large numbers of superinstructions, this
grows significantly.

Engine data is the data size of the Gforth binary,
which contains superinstruction optimization ta-
bles, among other things. These, of course grow
with the number of superinstructions.

Overall, superinstructions as currently implemented
in Gforth cannot reduce the code size; other tech-
niques, like converting only those non-primitives into
a primitive-centric form that are combined into a su-
perinstruction, or eliminating code fields, and switch-
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ing to byte code might change the picture for suffi-
ciently large programs. On the other hand, the in-
crease in memory consumption from primitive-centric
schemes and superinstructions should not be a problem
in desktop and server systems. But for many embed-
ded systems, the traditional scheme will continue to be
the threaded-code method of choice.

5 Experience with hybrid di-
rect /indirect threaded code

Implementing hybrid direct/indirect threaded code in
Gforth required several days of work on the engine, the
image file loader, and the image file comparator, plus
130 lines of changes in the cross compiler (also related
to image file generation).

The main difficulty was that there is now a difference
between an execution token (indirect threaded), and an
inline threaded-code element (direct threaded). This
requires representing this difference in the image file
format, and that requires changing all components that
deal with image files.

The change in the engine was comparatively easy.
The old version of Gforth supported direct threaded
code and indirect threaded code (through conditional
compilation), the new version supports hybrid di-
rect/indirect threaded code and indirect threaded code.
Therefore, the changes to the engine consisted mainly
of removing special cases for direct threaded code and
was completed in a few hours and resulted in a nice sim-
plification of the engine code. Hybrid direct/indirect
native code worked the first time I tried it.

You may wonder if such a change deep in the core
of the system caused any problems with existing Forth
software. In two months we only encountered a prob-
lem with see, and it was easy to fix.

The problems may be so rare in part because Gforth
already worked as both direct and indirect threaded
system. However, using , instead of compile, worked
on both old variants of Gforth, but does not work for
hybrid direct/indirect threading; we did not encounter
problems due to this, but users with lots of code based
on that assumption might have a different experience.

The prerequisite step to primitive-centric compila-
tion caused two problems:

e We built execution token tables with ]...[ in some
places, and that no longer worked after we changed
compile, to do something different than , (the
converse situation of the assumption discussed
above). We changed these tables to use ’...,.

e Replace-word changed a word to defer to an-
other word; this works only if all invocations of
the word go through the code field, and does not
work in primitive-centric code where part (or all)
of the action of the word is encoded at the in-
voking site. We changed replace-word to work
for colon definitions, which is good enough for our
applications.

Threaded Code Variations and Optimizations 6



We also compared the run-time of the direct
threaded doprims version of Gforth with a similar, later
hybrid direct/indirect threaded version of Gforth. We
found speedup factors of 1.03—1.13 on an Athlon-1200,
which is more than we expected. Some of this speedup
may be due to other changes in the code between these
versions, but we also saw similar speedups in an ear-
lier preliminary test that compared versions where the
main difference was the change from direct to hybrid
direct/indirect threaded code. Our explanation for the
size of the speedups is the reduction in cache misses
caused by cache consistency, possibly with positive side
effects (we also saw a reduction in branch mispredic-
tions that we did not expect).

6 Conclusion

Switching from traditional-style threaded code to a
primitive-centric scheme opens up a number of oppor-
tunities, most notably a wider applicability of superin-
structions, but it also makes direct threaded code vi-
able on 386 architecture processors, and enables a hy-
brid direct/indirect (or direct/double-indirect) thread-
ing scheme that offers the performance of direct-
threaded code without requiring any (non-portable)
machine-code generation. The price paid is a moderate
increase in threaded-code size.

Superinstructions offer good speedups on processors
with BTBs, moderate speedups on processors without
BTBs, and a moderate reduction in threaded code size
(but not enough to fully recover the increase through
primitive-centric code), but require more space for the
primitives.
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